Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 39-49    DOI: 10.13523/j.cb.2203055
    
Acquisition and Activity Exploration of Human β-Galactosidase R299L Mutant
ZHANG Yan1,2,MA Wen-hao2,ZHAO Tian-yi2,WU Xiao-bing2,**(),SHENG Wang1,YANG Yi-shu1,**()
1. Beijing University of Technology, Beijing 100124, China
2. Beijing GeneCradle Pharmaceutical Co., Ltd., Beijing 100023, China
Download: HTML   PDF(4685KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: GM1 gangliosidosis is a devastating lysosomal storage disease featured by progressive and fatal neurodegeneration, caused by a mutation in the galactosidase beta 1 (GLB1) gene that reduces the activity of human beta-galactosidase. Currently, no effective therapy exists for the affected individuals, and AAV gene therapy is viewed as the most promising method. The object of this research is to obtain a mutant of GLB1 with higher β-gal activity through genetic modification, so as to be used in subsequent AAV-mediated gene therapy. Methods: The sequence of galactosidase beta 1 gene from human and other six vertebrates was analyzed by multiple sequence alignment, and some amino acid sites were selected for modification. HEK-293 cells were transfected or infected with either the recombinant plasmid or rAAV9 carrying the mutant site, and the activity of the mutant was compared with that of the control. The rAAV9 virus carrying coGLB1-R299L was injected into GM1 mice to explore the expression of the mutant in vivo. Results: The coGLB1-R299L mutant was screened from 15 mutants and then transfected into HEK-293 cells. It displayed higher β-gal activity with a 30%~40% increase compared with that of the wild-type amino acid sequence. The β-gal activity of rAAV9-coGLB1-R299L group was 2.2 times higher than that of the cell control group in the AAV infection experiment in vitro. The results in vivo showed that rAAV9-coGLB1-R299L was widely expressed in the GM1 mice, and the β-gal enzyme activities in the heart, liver, spleen, lung and brain tissue were significantly increased. Conclusion: A mutant coGLB1-R299L with higher β-gal activity is obtained, and the in vitro expression and distribution of enzyme activity of rAAV9-coGLB1-R299L in model mice was preliminarily explored, laying a foundation for the application of this mutant in the treatment of AAV-mediated GM1 gangliosidosis.



Key wordsGM1 gangliosidosis      Galactosidase beta 1 gene      β-galactosidase      Adeno-associated virus vector      Site directed mutation     
Received: 24 March 2022      Published: 10 October 2022
ZTFLH:  Q819  
Corresponding Authors: Xiao-bing WU,Yi-shu YANG     E-mail: wuxiaobing@bj;yishu-y@bjut.edu.cn
Cite this article:

ZHANG Yan,MA Wen-hao,ZHAO Tian-yi,WU Xiao-bing,SHENG Wang,YANG Yi-shu. Acquisition and Activity Exploration of Human β-Galactosidase R299L Mutant. China Biotechnology, 2022, 42(9): 39-49.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203055     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/39

突变体代号 突变构建引物1(5'-3') 突变构建引物2(5'-3')
F193Y GCAGCTATTATGCCTGTGACTTTGATTACC AGGCATAATAGCTGCCGTACTCATTCTC
A194T GGCAGCTATTTCACCTGTGACTTTGA CAGGTGAAATAGCTGCCGTAC
F197Y TGTGACTATGATTACCTGCGCTTC CGCAGGTAATCATAGTCACAGGC
R208H CAGAAGCGGTTTCATCACCACCTGGGC CAGGTGGTGATGAAACCGCTTCTGCAG
G245D GGCACCGACTCCAACATCACAG ATGTTGGAGTCGGTGCCG
S246N CACCGGCAACAACATCACAGATGC TGATGTTGTTGCCGGTGCCGAAG
I284V ACACAGCACCGTGAAGACAGAGGC CTCTGTCTTCACGGTGCTGTGTGGCTG
R299L TCCTGGCCCTGGGCGCCTCCGT GGAGGCGCCCAGGGCCAGGATGT
I353L CCTGCGGAACCTGATCCAGAAGTTTGAG AACTTCTGGATCAGGTTCCGCAGGG
N459L GGAGAGAAACCTGGTGATCACCCTGAACATC AGGGTGATCACCAGGTTTCTCTCCAGCAC
Y488S CGGCGCCTCCATCAATGATTTCAAGGG TGAAATCATTGATGGAGGCGCCGTAATTCA
Y488F CGGCGCCTTTATCAATGATTTCAAGG GAAATCATTGATAAAGGCGCCGTAAT
R299A TCCTGGCCGCTGGCGCCTCCGT GGAGGCGCCAGCGGCCAGGATGT
R299F TCCTGGCCTTTGGCGCCTCCGT GGAGGCGCCAAAGGCCAGGATGT
R299Q TCCTGGCCCAAGGCGCCTCCGT GGAGGCGCCTTGGGCCAGGATGT
Table 1 Primers used for constructing mutants
Fig.1 Design and construction of GLB1 mutants (a)β-Gal protein sequence alignment of human, zebrafish, mouse, cat, dog, pig, and rhesus monkey; arrows, selected 12 GLB1 gene mutation sites (b) Nucleic acid sequencing results (c) Schematic diagram of the plasmid carrying GLB1 gene
Fig.2 Activity of β-gal of GLB1 mutants (a) Activity of β-gal of various GLB1 mutants (b) Dose-effect relationship for R299L, control, untransfected HEK-293 cells
Fig.3 In situ staining of cells expressing β-gal with X-gal Control: Untransfected HEK-293 cells
Fig.4 Comparison of enzyme activities of four mutants at the 299th amino acid (a) Expression of β-gal in transfected cells (b) Enzyme activity of HEK-293 cells transfected with mutants at the 299th amino acid. Control: Untransfected HEK-293 cells
Fig.5 AAV9 mediates the in vitro expression of β-gal by coGLB1-R299L (a) Titer detection of rAAV9-coGLB1-R299L by dot blot. Standard: Plasmids with concentration of 2×1012, 1×1012, 5×1011, 2.5×1011, 1.25×1011, 6.25×1010, 3.125×1010 vg/mL (b) HEK-293 cell β-gal activity infected by rAAV9-coGLB1-R299L. Control: Untransfected HEK-293 cells
Fig.6 AAV9 mediates the expression of β-gal by coGLB1 and R299L mutant in model mouse (a) X-gal staining of frozen section of liver tissue. Scale: 100 μm (b) The enzyme activities of mouse heart, liver, spleen, lung and kidney (c) The enzyme activities of mouse brain (d) The enzyme activities of mouse serum. WT+PBS: PBS injected wide type C57BL/6N; GM1 mice+PBS: PBS injected homozygous G455R model mouse; GM1 mice+AAV: rAAV9-coGLB1-R299L injected homozygous G455R model mouse
[1]   Caciotti A, Garman S C, Rivera-Colón Y, et al. GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2011, 1812(7): 782-790.
doi: 10.1016/j.bbadis.2011.03.018
[2]   Nicoli E R, Annunziata I, D’Azzo A, et al. GM1 gangliosidosis-A mini-review. Frontiers in Genetics, 2021, 12: 734878.
doi: 10.3389/fgene.2021.734878
[3]   Magistretti P J, Geisler F H, Schneider J S, et al. Gangliosides: treatment avenues in neurodegenerative disease. Frontiers in Neurology, 2019, 10: 859.
doi: 10.3389/fneur.2019.00859 pmid: 31447771
[4]   Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Molecular Genetics and Metabolism, 2008, 94(4): 391-396.
doi: 10.1016/j.ymgme.2008.04.012 pmid: 18524657
[5]   Hofer D, Paul K, Fantur K, et al. GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid β-galactosidase. Human Mutation, 2009, 30(8): 1214-1221.
doi: 10.1002/humu.21031
[6]   Pattali R, Mou Y C, Li X J. AAV9 Vector: a novel modality in gene therapy for spinal muscular atrophy. Gene Therapy, 2019, 26(7-8): 287-295.
doi: 10.1038/s41434-019-0085-4 pmid: 31243392
[7]   Verdera H C, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Molecular Therapy, 2020, 28(3): 723-746.
doi: S1525-0016(20)30003-4 pmid: 31972133
[8]   Lee E J, Guenther C M, Suh J. Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Current Opinion in Biomedical Engineering, 2018, 7: 58-63.
doi: 10.1016/j.cobme.2018.09.004 pmid: 31106283
[9]   Liu S C, Ma W H, Feng Y Y, et al. AAV9-coGLB1 improves lysosomal storage and rescues central nervous system inflammation in a mutant mouse model of GM1 gangliosidosis. Current Gene Therapy, 2022, 22(4): 352-365.
doi: 10.2174/1566523222666220304092732 pmid: 35249485
[10]   Liu S C, Feng Y Y, Huang Y L, et al. A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Experimental Biology and Medicine (Maywood, N J), 2021, 246(11): 1330-1341.
[11]   张梦瑶, 杨峰, 刘开东, 等. 利用同源重组技术构建DKK1BMP4真核表达载体及共转染成纤维细胞表达的研究. 华北农学报, 2018, 33(5): 117-124.
doi: 10.7668/hbnxb.2018.05.017
[11]   Zhang M Y, Yang F, Liu K D, et al. Construction of eukaryotic expression vector of DKK1, BMP4 gene by homologous recombination and its expression in fibroblasts. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 117-124.
doi: 10.7668/hbnxb.2018.05.017
[12]   Guo P, El-Gohary Y, Prasadan K, et al. Rapid and simplified purification of recombinant adeno-associated virus. Journal of Virological Methods, 2012, 183(2): 139-146.
doi: 10.1016/j.jviromet.2012.04.004 pmid: 22561982
[13]   吴小兵, 董小岩, 伍志坚, 等. 一种快速高效分离和纯化重组腺病毒伴随病毒载体的方法. 科学通报, 2000, 45(19): 2071-2075.
[13]   Wu X B, Dong X Y, Wu Z J, et al. A method of rapidly and efficiently isolating and purifying recombinant adeno-associated viral vector. Chinese Science Bulletin, 2000, 45(19): 2071-2075.
[14]   彭建强, 彭忞, 谭淑萍, 等. 一种高效快速浓缩腺相关病毒载体的方法. 病毒学报, 2005, 21(1): 11-14.
[14]   Peng J Q, Peng M, Tan S P, et al. A method of efficiently and rapidly condensing adeno-associated viral vector. Chinese Journal of Virology, 2005, 21(1): 11-14.
[15]   Kimura M, Aviv A. Measurement of telomere DNA content by dot blot analysis. Nucleic Acids Research, 2011, 39(12): e84.
doi: 10.1093/nar/gkr235
[16]   Lee B Y, Han J, Im J S, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell, 2006, 5(2): 187-195.
doi: 10.1111/j.1474-9726.2006.00199.x pmid: 16626397
[17]   Cadaoas J, Hu H M, Boyle G, et al. Galactosialidosis: preclinical enzyme replacement therapy in a mouse model of the disease, a proof of concept. Molecular Therapy - Methods & Clinical Development, 2021, 20: 191-203.
[18]   Kwapiszewski R, Szczudlowska J, Kwapiszewska K, et al. Determination of acid β-galactosidase activity: methodology and perspectives. Indian Journal of Clinical Biochemistry, 2014, 29(1): 57-62.
doi: 10.1007/s12291-013-0318-z pmid: 24478550
[19]   Baek R C, Broekman M L D, Leroy S G, et al. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One, 2010, 5(10): e13468.
doi: 10.1371/journal.pone.0013468
[20]   Kasperzyk J L, d’Azzo A, Platt F M, et al. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM 1 gangliosidosis mice. Journal of Lipid Research, 2005, 46(4): 744-751.
doi: 10.1194/jlr.M400411-JLR200 pmid: 15687347
[21]   Suzuki Y. Chemical chaperone therapy for GM1-gangliosidosis. Cellular and Molecular Life Sciences: CMLS, 2008, 65(3): 351-353.
doi: 10.1007/s00018-008-7470-2
[22]   Condori J, Acosta W, Ayala J, et al. Enzyme replacement for GM1-gangliosidosis: uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase: RTB lectin fusion. Molecular Genetics and Metabolism, 2016, 117(2): 199-209.
doi: 10.1016/j.ymgme.2015.12.002 pmid: 26766614
[23]   Sawada T, Tanaka A, Higaki K, et al. Intracerebral cell transplantation therapy for murine GM1 gangliosidosis. Brain and Development, 2009, 31(10): 717-724.
doi: 10.1016/j.braindev.2008.11.004 pmid: 19118961
[24]   Chen J C, Luu A R, Wise N, et al. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM 1 gangliosidosis in mice. Journal of Biological Chemistry, 2020, 295(39): 13532-13555.
doi: 10.1074/jbc.RA119.009811
[25]   Ward N J, Buckley S M K, Waddington S N, et al. Codon optimization of human factor Ⅷ cDNAs leads to high-level expression. Blood, 2011, 117(3): 798-807.
doi: 10.1182/blood-2010-05-282707
[26]   Juven-Gershon T, Cheng S S, Kadonaga J T. Rational design of a super core promoter that enhances gene expression. Nature Methods, 2006, 3(11): 917-922.
pmid: 17124735
[27]   Ferizi M, Aneja M K, Balmayor E R, et al. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Scientific Reports, 2016, 6: 39149.
doi: 10.1038/srep39149 pmid: 27974853
[28]   Jalkanen A L, Coleman S J, Wilusz J. Determinants and implications of mRNA poly(A) tail size - does this protein make my tail look big? Seminars in Cell & Developmental Biology, 2014, 34: 24-32.
[29]   Chang J L, Jin J P, Lollar P, et al. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity. Journal of Biological Chemistry, 1998, 273(20): 12089-12094.
doi: 10.1074/jbc.273.20.12089 pmid: 9575152
[30]   Wu W M, Xiao L, Wu X, et al. Factor IX alteration p.Arg338Gln (FIX Shanghai) potentiates FIX clotting activity and causes thrombosis. Haematologica, 2021, 106(1): 264-268.
doi: 10.3324/haematol.2019.216713 pmid: 32079698
No related articles found!