Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 33-39    DOI: 10.13523/j.cb.2111027
    
Research Progress of Supercritical Carbon Dioxide Technology in Tissue Engineering Scaffolds
XIE Jia-xuan,LIU Xuan**(),LIU Gang**()
Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
Download: HTML   PDF(865KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As one of the three major elements in tissue engineering research, tissue engineering scaffolds provide an excellent environment for cell attachment, migration and proliferation. Traditional preparation techniques of polymeric scaffolds for tissue engineering, such as particle leaching, phase inversion and electrospinning, are relatively mature in theory and technology, but since most of them require the participation of organic solvents, there are still problems in the process, like the residual organic solvents, the control of holes and the poor connectivity. Supercritical carbon dioxide (SC-CO2) has a density similar to that of a liquid, while its viscosity and diffusion coefficient is closer to that of a gas, respectively, and it possesses a special performance of physical and chemical properties like strong fluidity, large dissolving power, and high heat transfer efficiency. Combining with traditional technology, it can effectively circumvent the problems mentioned above in a green and gentle system, which has broad prospects in the scaffolds preparation of tissue engineering and drug loading.



Key wordsTissue engineering      Supercritical carbon dioxide(SC-CO2)      Scaffold preparation     
Received: 11 November 2021      Published: 05 May 2022
ZTFLH:  Q819  
Corresponding Authors: Xuan LIU,Gang LIU     E-mail: liuxuan@xmu.edu.cn;gangliu.cmitm@xmu.edu.cn
Cite this article:

XIE Jia-xuan,LIU Xuan,LIU Gang. Research Progress of Supercritical Carbon Dioxide Technology in Tissue Engineering Scaffolds. China Biotechnology, 2022, 42(4): 33-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111027     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/33

Fig.1 Carbon dioxide pressure-temperature phase diagram
技术名称 技术原理 支架材料 研究结果 参考文献
SC-CO2静电纺丝技术 聚合物溶液或熔融液注入到SC-CO2,在高压静电作用下,经喷头喷射后沉积固化 聚(二甲基硅氧烷)(PDMS)和聚(D,L-乳酸)(PLA) 制备了PDMS和PLA纤维,通过观察室证实了超临界流体静电纺丝的可行性 [21]
聚乙烯吡咯烷酮(PVP) 制备了平均孔径为2~4 μm的聚乙烯吡咯烷酮(PVP)中空纤维 [22]
聚乙烯吡咯烷酮(PVP) 制备了直径低至约1.4 μm的PVP微纤维 [23]
SC-CO2发泡技术 SC-CO2扩散溶解聚合物,通过增塑作用及升温降压,促使气核生长,SC-CO2逸出后,聚合物固化形成多孔结构 多孔聚己内酯(PCL) 制备具有光滑的孔隙表面和互连孔隙的大孔径、可缓释万古霉素的固体多孔材料 [25]
聚乙烯醇-聚乙二醇(PVA-PEG) 制备了聚乙烯醇-聚乙二醇(PVA-PEG)多孔支架 [26]
聚氨酯/聚(D,L-乳酸)(PU/PDLLA) 制备了具有开孔、孔洞均匀并且相互连通结构的聚氨酯/聚(D,L-乳酸)薄膜支架 [27]
SC-CO2相转化技术 SC-CO2作为非溶剂,快速溶解在聚合物/溶剂体系中,诱导聚合物溶液进入非稳态,从而发生相分离 醋酸纤维素 制备了醋酸纤维素薄膜,通过改变操作条件,获得不同膜结构 [29]
聚苯乙烯 制备了多孔非对称聚苯乙烯膜,通过温度和压力控制膜的孔隙率和孔径 [30]
聚-L-丙交酯 制备了聚-L-丙交酯(PLLA)纳米纤维支架,兼具高孔隙率和优良力学性能 [31]
SC-CO2浸渍技术 SC-CO2溶解药物,溶胀聚合物,随后SC-CO2泄去,药物滞留其中 聚(D,L-乳酸)(PDLLA) 制备了浸渍紫杉醇的PDLLA支架 [34]
壳聚糖 制备了适用于口腔黏膜缓释给药的载布洛芬壳聚糖薄膜 [35]
聚(D, L-丙交酯)(PLA)和聚(D,L-丙交酯-共-乙交酯)(PLGA) 制备了载有抗肿瘤药物5-氟尿嘧啶(5-Fu)的PLA/PLGA支架 [36]
Table 1 Research grogress of supercritical CO2 technology in tissue engineering scaffolds
[1]   Langer R, Vacanti J. Advances in tissue engineering. Journal of Pediatric Surgery, 2016, 51(1): 8-12.
doi: 10.1016/j.jpedsurg.2015.10.022
[2]   Langer R, Vacanti J P. Tissue engineering. Science, 1993, 260(5110): 920-926.
doi: 10.1126/science.8493529 pmid: 8493529
[3]   Guan G, da Huo, Li Y Z, et al. Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart. Bioactive Materials, 2021, 6(12): 4415-4429.
doi: 10.1016/j.bioactmat.2021.04.010 pmid: 33997517
[4]   Stevens K R, Scull M A, Ramanan V, et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9(399): eaah5505.
doi: 10.1126/scitranslmed.aah5505
[5]   Orive G, Hernández R M, Gascón A R, et al. Cell encapsulation: promise and progress. Nature Medicine, 2003, 9 (1): 104-10.
doi: 10.1038/nm0103-104
[6]   Mandal B B, Kundu S C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 2009, 30(15): 2956-2965.
doi: 10.1016/j.biomaterials.2009.02.006 pmid: 19249094
[7]   贾超. 超临界流体技术制备组织工程三维多孔支架工艺研究. 石家庄: 河北科技大学, 2014.
[7]   Jia C. Research on preparation of3D porous scaffold of tissue engineering based on supercritical fluid technology. Shijiazhuang: Hebei University of Science and Technology, 2014
[8]   王身国, 杨健, 蔡晴, 等. 组织工程用生物材料及细胞支架研究进展. 中华整形外科杂志, 2000(6): 328-330.
[8]   Wang S G, Yang J, Cai Q, et al. Research progress of biomaterials and cell scaffolds for tissue engineering. Chinese Journal of Plastic Surgery and Burns, 2000(6): 328-330.
[9]   Draghi L, Resta S, Pirozzolo M G, et al. Microspheres leaching for scaffold porosity control. Journal of Materials Science Materials in Medicine, 2005, 16(12): 1093-1097.
doi: 10.1007/s10856-005-4711-x
[10]   Whang K, Goldstick T K, Healy K E. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials, 2000, 21(24): 2545-2551.
pmid: 11071604
[11]   Hong J, Yeo M, Yang G H, et al. Cell-electrospinning and its application for tissue engineering. International Journal of Molecular Sciences, 2019, 20(24): 6208.
doi: 10.3390/ijms20246208
[12]   Zhu W, Ma X Y, Gou M L, et al. 3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 2016, 40: 103-112.
doi: 10.1016/j.copbio.2016.03.014
[13]   Barry J J A, Silva M M C G, Popov V K, et al. Supercritical carbon dioxide: putting the fizz into biomaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 364(1838): 249-261.
[14]   聂凌鸿, 周如金, 彭华松, 等. 超临界二氧化碳的应用研究. 林产化工通讯, 2003, 37(3): 29-34.
[14]   Nie L H, Zhou R J, Peng H S, et al. Application study on supercritical carbon dioxide. Journal of Chemical Industry of Forest Products (Bimonthly), 2003, 37(3): 29-34.
[15]   Verónico Sánchez F J, Elizalde Solis O, Zamilpa A, et al. Extraction of galphimines from Galphimia glauca with supercritical carbon dioxide. Molecules (Basel, Switzerland), 2020, 25(3): 477.
doi: 10.3390/molecules25030477
[16]   White A, Burns D, Christensen T W. Effective terminal sterilization using supercritical carbon dioxide. Journal of Biotechnology, 2006, 123(4): 504-515.
doi: 10.1016/j.jbiotec.2005.12.033
[17]   冯超, 王瑜, 孔令镕, 等. 超临界CO2萃取修复污染土壤的发展与展望. 现代化工, 2020, 40(5): 23-27, 31.
[17]   Feng C, Wang Y, Kong L R, et al. Advances on supercritical CO2 extraction for remediation of contaminated soil. Modern Chemical Industry, 2020, 40(5): 23-27, 31.
[18]   董力. 超临界二氧化碳发电技术概述. 中国环保产业, 2017(5): 48-52.
[18]   Dong L. Summarization on power technology of supercritical carbon dioxide. China Environmental Protection Industry, 2017(5): 48-52.
[19]   Campardelli R, Baldino L, Reverchon E. Supercritical fluids applications in nanomedicine. The Journal of Supercritical Fluids, 2015, 101: 193-214.
doi: 10.1016/j.supflu.2015.01.030
[20]   Dunham M. Supercritical Carbon Dioxide Cycles for Generation IV Nuclear Reactors. 2022. http://large.stanford.edu/courses/2014/ph241/dunham1/.
[21]   Levit N, Tepper G. Supercritical CO2-assisted electrospinning. The Journal of Supercritical Fluids, 2004, 31(3): 329-333.
doi: 10.1016/j.supflu.2003.12.008
[22]   Wahyudiono, Machmudah S, Kanda H, et al. Formation of PVP hollow fibers by electrospinning in one-step process at sub and supercritical CO2. Chemical Engineering and Processing: Process Intensification, 2014, 77: 1-6.
doi: 10.1016/j.cep.2013.12.007
[23]   Baldino L, Cardea S, Reverchon E. A supercritical CO2 assisted electrohydrodynamic process used to produce microparticles and microfibers of a model polymer. Journal of CO2 Utilization, 2019, 33: 532-540.
[24]   刘倩倩. 超临界二氧化碳发泡技术制备PLGA多孔组织工程支架研究. 杭州: 浙江大学, 2013.
[24]   Liu Q Q. Fabrication of porous PLGA scaffolds using supercritical carbon dioxide for application in tissue engineering. Hangzhou: Zhejiang University, 2013.
[25]   García-González C A, Barros J, Rey-Rico A, et al. Antimicrobial properties and osteogenicity of vancomycin-loaded synthetic scaffolds obtained by supercritical foaming. ACS Applied Materials & Interfaces, 2018, 10(4): 3349-3360.
[26]   Liu P, Chen W, Liu C, et al. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Scientific Reports, 2019, 9: 9534.
doi: 10.1038/s41598-019-46061-7
[27]   Savaris M, Garcia C S C, Roesch-Ely M, et al. Polyurethane/poly(d, l-lactic acid) scaffolds based on supercritical fluid technology for biomedical applications: studies with L929 cells. Materials Science & Engineering C, Materials for Biological Applications, 2019, 96: 539-551.
[28]   马腾, 陈爱政, 王士斌. 超临界二氧化碳流体发泡技术制备组织工程支架及其泡孔形貌控制研究进展. 中国生物医学工程学报, 2014, 33(4): 467-474.
[28]   Ma T, Chen A Z, Wang S B. Research progress in study of tissue engineering scaffolds and their pore morphologies by supercritical CO2 foaming technology. Chinese Journal of Biomedical Engineering, 2014, 33(4): 467-474.
[29]   Cardea S, de Marco I. Cellulose acetate and supercritical carbon dioxide: membranes, nanoparticles, microparticles and nanostructured filaments. Polymers, 2020, 12(1): 162.
doi: 10.3390/polym12010162
[30]   刘学武, 陈淑花, 詹世平. 超临界CO2诱导相转化法制备聚苯乙烯膜及膜体系的相图计算. 高等学校化学学报, 2016, 37(8): 1573-1579.
[30]   Liu X W, Chen S H, Zhan S P. Experimental study and theoretical phase diagram calculation for polystyrene membranes prepared by supercritical CO2-induced phase inversion†. Chemical Journal of Chinese Universities, 2016, 37(8): 1573-1579.
[31]   Deng A H, Chen A Z, Wang S B, et al. Porous nanostructured poly-l-lactide scaffolds prepared by phase inversion using supercritical CO2 as a nonsolvent in the presence of ammonium bicarbonate particles. The Journal of Supercritical Fluids, 2013, 77: 110-116.
doi: 10.1016/j.supflu.2013.02.020
[32]   蔡佩. 超临界流体辅助制备负载型离子液体及其CO2吸附性能. 大连: 大连理工大学, 2017.
[32]   Cai P. Preparation of supported ionic liquid using supercritical fluid and CO2 adsorption properties. Dalian: Dalian University of Technology, 2017.
[33]   Duarte A R C, Mano J F, Reis R L. Perspectives on: supercritical fluid technology for 3D tissue engineering scaffold applications. Journal of Bioactive and Compatible Polymers, 2009, 24(4): 385-400.
doi: 10.1177/0883911509105796
[34]   Yoda S, Sato K, Oyama H T. Impregnation of paclitaxel into poly(dl-lactic acid) using high pressure mixture of ethanol and carbon dioxide. RSC Advances, 2011, 1(1): 156.
doi: 10.1039/c1ra00070e
[35]   Tang C, Guan Y X, Yao S J, et al. Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. International Journal of Pharmaceutics, 2014, 473(1-2): 434-441.
doi: 10.1016/j.ijpharm.2014.07.039
[36]   Cabezas L I, Gracia I, García M T, et al. Production of biodegradable porous scaffolds impregnated with 5-fluorouracil in supercritical CO2. The Journal of Supercritical Fluids, 2013, 80: 1-8.
doi: 10.1016/j.supflu.2013.03.030
[1] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[2] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[3] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[4] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[5] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[6] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[7] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[8] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[9] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[10] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[11] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.
[12] WANG Dian-liang. Seed Cells[J]. China Biotechnology, 2014, 34(7): 108-113.
[13] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[14] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[15] WANG Dian-liang. Types and Applications of Tissue Engineering Products[J]. China Biotechnology, 2014, 34(11): 125-129.