Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding

CHEN Yi-he,LI Xin-miao,PENG Wei,LEI Chu-zhao,ZHAO Huang-qing,ZHANG Zi-jing,LIU Xian,HUANG Yong-zhen

China Biotechnology ›› 2022, Vol. 42 ›› Issue (4) : 78-84.

PDF(565 KB)
PDF(565 KB)
China Biotechnology ›› 2022, Vol. 42 ›› Issue (4) : 78-84. DOI: 10.13523/j.cb.2110043

Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding

Author information +
History +

Abstract

Three-dimensional genomics is a newly developed subject that studies the three-dimensional space and structure of genome. Based on considering genome sequence, gene structure and its regulatory elements, it studies the functions of gene replication, transcription, repair and regulation in biological processes and the three-dimensional structure of genome sequence in the nucleus. With the emergence and improvement of high-throughput sequencing technology, the research of three-dimensional genomics has developed rapidly. This paper focuses on the development process, research technology and structural level of three-dimensional genomics, and summarizes the application of three-dimensional genomics in animal genetics and breeding in recent years.

Key words

Three-dimensional genome / Chromatin spatial structure / Animal genetics and breeding

Cite this article

Download Citations
Yi-he CHEN, Xin-miao LI, Wei PENG, et al. Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding[J]. China Biotechnology, 2022, 42(4): 78-84 https://doi.org/10.13523/j.cb.2110043
基因组学从提出到现在经历了30多年的发展,从一维(基因序列)层面到二维(序列之间的相互作用)层面,再到如今的三维(染色质的空间结构)层面,科学家们对基因组的研究逐渐深入。1990年,以美国为主的包括其他多个国家共同提出的“人类基因组计划”(human genome project,HGP)[1],对人类全部基因组中的核苷酸序列进行了测定,并且对基因组中的主要基因及其线性结构进行了定义。2003年,由美国科学家提出的“DNA元件百科全书计划”(encyclopedia of DNA elements, ENCODE)[2],对人类基因组中DNA序列进行了系统地解析和注释,并且定义了基因表达和染色质状态的相关概念。随着更多的基因序列、调控元件和相关注释的发现和产生,已知的结构及模型已经无法解释这些基因组对生物表型的作用。因此,三维基因组学应运而生,其专注于研究基因组的空间结构对基因表达及调控功能的影响。

1 三维基因组发展历程和研究技术概述

科学家们对染色体结构的探索可以追溯到20世纪80年代,研究者们通过显微镜结合荧光原位杂交技术(FISH),对细胞核中染色质的单个位点上的空间结构进行研究[3]。但受当时科学技术的限制,此阶段的研究只能对染色质结构做低分辨率上的解读,没有太过深入的研究。直到2003年染色质构象捕获(chromatin conformation capture, 3C)技术的出现,这一问题才得到解决。这一技术是由Dekker等[4]提出,用于测定特定两个位点之间的染色质交互作用。这也是科学家们第一次提出的对染色体三维结构进行研究的方法,开启了三维基因组学的大门。3C技术首先将细胞核中的染色质进行甲醛固定,使细胞核内存在互作的DNA与蛋白质发生交联;然后使用DNA限制性内切酶消化染色质,在酶切位点就会形成黏性末端;之后通过DNA连接酶使线性距离远但空间距离近的两个片段连接在一起;最后通过定量PCR技术检测目标片段是否存在相互作用[5]
由于3C技术存在只能进行一对一的位置互作验证的局限,所以在3C技术的基础上, Simonis等[6]开发了 4C( circularized chromatin conformation capture)技术, 可以用于测定一个点到多个点之间的相互作用。Dostie 等[7] 开发了 5C ( carbon-copy chromatin conformation capture)技术, 可以测定多个点到多个点之间的相互作用,并且解决了3C技术中研究多基因互作过程时通量低的问题。
从3C到5C的演变,科学家们深入地了解了染色质片段间的相互作用,但依然不能全面直观认识染色体的3D结构。为了能够获得全基因组范围内的全部染色质交互作用,Lieberman-Aiden 等[8] 开发出了高通量染色体构象捕获(high-throughput chromosome conformation capture,Hi-C)技术,使得三维基因组学得到了突破性的发展。并在这之后诞生了一系列衍生技术,如单细胞Hi-C(single cell Hi-C)[9]、原位Hi-C(in situ Hi-C)[10]、DLO Hi-C[11]、Capture-C、TCC(tethered conformation capture)等。其中单细胞Hi-C技术主要用于检测单个细胞中的染色质相互作用;原位Hi-C改进了细胞核处理条件及连接体系,并降低了实验噪声;DLO Hi-C则去除了生物素标记步骤,通过2轮酶切连接反应,简化流程同时降低了实验噪声;Capture-C可以克服3C及其衍生技术需要大量细胞的限制,通过少量的细胞就能绘制高质量的互作图谱;TCC技术则是一种改进的Hi-C方法,其中关键反应(DNA末端标记和循环)在固相而非溶液中进行,并且能够产生更好的信噪比,从而更好地映射低频相互反应。
然而3C及其衍生技术无法研究特定蛋白质是否能够介导染色质空间结构的形成,因此Fullword等[12] 开发出了CHIA-PET(chromatin interaction analysis with paired-end tag sequencing)技术,可以在碱基对层次的分辨率上解析蛋白质之间介导的功能相互作用。相较于CHIP-loop,CHIA-PET可以实现全基因范围内的特定蛋白质(转录因子)介导的多对多互作的研究[13]。以上技术都推动了科学家们对染色质高级结构的研究。

2 三维基因组结构层次

通过测序技术的发展和研究,染色质的三维结构也先后被揭示。染色体的构象被发现具有多个层级结构[14],三维结构由大到小可分为染色体疆域(chromosome territory, CT)、染色体区室(chromatin compartment A/B)、拓扑关联结构域 (topologically associating domain,TAD)和染色质环(loop)。

2.1 染色体疆域

在真核生物的基因组中,染色体在细胞核内的分布并不是随机的[15],不同的染色体会有倾向的占据细胞核内不重合的区域,这些区域被称为染色体疆域[16]。经过研究发现,这些区域存在一定的规律。首先染色体的位置相对不变,如富含基因区域更加倾向于与类似区域聚集在一起,而基因贫乏区域仅在它们位于同条染色体时才会发生聚集[17]。部分染色体会发生重叠但只限于染色体疆域的边界区域,并且重叠程度对基因的功能和表达的稳定性具有重要影响[18]

2.2 染色体区室

2003年,Dostie等[7] 通过Hi-C技术发现,整个基因组被分割成两个空间区室,相邻的区室间存在着不同的互作方式,而线性距离较远的区室间也会发生相互作用。因此,他们提出了染色体结构的另一重要特征,即染色体区室,并将这些区室划分成区室A和区室B两种。区室A为开放的染色质区室,富含转录活性组蛋白标记和转录因子结合位点,通常位于细胞核内部;区室B为关闭的染色质区室,表达不活跃,含有抑制性的组蛋白标记,位于核的外围[19]。通过研究发现[20],区室A 和区室B之间并不是一成不变的,而是在不同细胞类型中的排列具有很大的空间可塑性,在特定条件下,会发生相互转化形成动态平衡。这种相互转化和基因表达调控存在一定的关系。当染色体上的某区域出现A/B区室之间的转化时,其中基因的转录活性也会受到影响。 当区域内区室A转化为区室B时,相关基因大多表达下调,而 区室B转化为 区室A时,相关基因的表达则会上调。

2.3 TAD

研究表明,区室依然不是染色体中最小的结构单元,实验中通过提高Hi-C数据分辨率能够观察到更小的区块,这些区块内部会发生密切的相互作用,而区块间的相互作用就比较稀疏,这种区块被称为TAD [21]。TAD在很多生物体内被发现,包括哺乳动物中的人[22]、小鼠[23],非哺乳动物中的斑马鱼[24]、鸭子[25]、果蝇[26]以及植物中的水稻[27]、棉花[28]等。不同生物细胞中,TAD的位置相对不变,只是存在互作频率上的差别[22]。同时,通过观察互作热图,可以发现TAD间存在着一些明显间隔,这些间隔被称为TAD边界。TAD边界由大量的阻遏子CTCF和粘连蛋白复合体组成,这些蛋白质因子可以阻止TAD向邻近的基因组区域扩散,从而维持边界的稳定性 [29]
研究表明,TAD在染色质高级结构组成与表达调控中发挥着非常重要的作用:TAD边界能够发挥传统绝缘子的作用[24];大多数启动子、增强子的相互作用也都被限制在结构域内[30];TAD还是DNA重组修饰、染色质复制调控的基本单元[31]。此外,很多疾病的发生[32]、机体应激后反应过程[33]都伴随着TAD边界的移动或消失。同时,其形成机制也在不断被揭示。2019年7月,Despang等[34]通过研究得出,TAD的建立和维持不仅需要边界序列,而且依赖于边界和CTCF结合位点的协同作用。

2.4 染色质环

染色质环是指两个相隔较远的染色质之间形成的环状结构。染色质环并不仅仅是染色质三维结构的一种形式,同时它与DNA复制、转录都密切相关,起着重要的调控作用[35]。2014年,Rao等[36] 通过实验得到Hi-C数据,发现所研究的细胞系中30%的染色质环与已知的启动子-增强子作用之间相关联,并且大部分的染色质环边界都有CTCF与粘连蛋白。基因中染色质环与启动子相关联比不关联具有较高的表达水平,而且部分基因的激活需要特定类型的染色质环出现才能够引发。研究结果表明,染色质环可以通过启动子、增强子这些顺式作用元件的激活与否来调控基因功能表达,并且染色质环的形成也与启动子、增强子、CTCF结合位点以及长距离之间的互作密切相关。

3 三维基因组在动物遗传育种中的应用

3.1 三维基因组在猪遗传育种中的应用

猪作为重要农业动物,其遗传育种一直备受关注。早在2001年,中国和丹麦两国的科学家就启动了猪基因组合作计划,对家猪基因组进行大规模测序研究。尽管如此,对其中占基因组98%的非编码区域的功能研究却很少,调控元件注释也并不清晰,这严重影响了对猪经济性状表达调控机制的探究以及相关基因组遗传育种技术的创新。因此,Zhao等[37]结合CHIP-seq、Hi-C、RNA-seq和ATAC-seq等多种技术构建了猪组织表观调控研究技术体系,以杜洛克猪、瘦肉型大白猪、梅山猪及脂肪型恩施黑猪4个品种作为研究对象,得到了包含12种组织的199组表观遗传调控数据,从中分析了猪基因组调控元件的组织特异性,并阐明了其三维空间结构对基因表达调控的影响,为后续猪功能基因组及性状表达调控机制研究提供了参考。
2020年,中国科学院北京基因组研究所Li等[38] 通过sisHi-C技术和CHIP-seq技术构建了猪体细胞染色质三维结构图谱,对猪早期胚胎发育过程中染色质空间结构重编程过程进行实时追踪,并且在各个折叠层次上与小鼠染色质进行比较,揭示了猪早期胚胎发育过程中的部分染色质空间结构重编程特点,发现染色质结构重编程的速率在胚胎成功发育中可能起着关键作用。这项研究结果有助于增加商业化养猪和生产的产仔数,并为之后探究提高猪的辅助生殖效率提供了参考。
除此之外,Tian等[39]通过Hi-C技术,基于最新的猪参考基因组和11个世界范围内具有地理和表型代表性猪种的从头组装基因组,构建了猪泛基因组,有助于更准确地理解不同品种的遗传变异。四川农业大学动科学院[40]为深入探究猪肉质性状转录调控的分子机制,基于现有的猪参考基因组,补充完善并注释了大量调控性转录本,同时采用Hi-C技术对猪脂肪组织的三维基因组空间结构进行重构,为进一步开展分子遗传育种提供了重要的基础数据和理论支持。

3.2 三维基因组在牛遗传育种中的应用

基因图谱是遗传学研究的重要内容,也是牛分子遗传育种的重要参考依据。从1994年Z.Duan出版的第一张只包含202个标记的牛基因图谱[41],发展到了现在的4 000多个标记[42],牛遗传图谱正逐渐完善,有助于加速牛主要经济性状的选择,有利于提高其经济效益。牛的基因图谱为了解哺乳动物的进化提供了参考,并且加速了家畜品种遗传改良。2016年,Lee等[43]通过NGS技术对韩国本地牛与其他4个品种的分化水平和种群结构进行了分析,确定了该品种特有的基因和蛋白质,这也是其具有独特的肉类品质的原因,有着很好的参考价值。2017年,Sasago等[44]通过对574只日本黑牛和40 657个SNPs位点进行候选基因分析,发现体重相关基因的有利等位基因对脂肪酸的形成有不利影响。2016年,Kim等[45]对非洲牛进行了测序,发现在全基因组的水平上具有独特且多样的适应性。这些全基因组测序的结果,为研究肉牛的优良性状提供了良好的资源材料。
此外,本课题组已经完成了秦川牛肌肉基因组三维结构及肌肉发育相关基因的转录调控研究[46]。研究结果发现,成年牛和胎牛肌肉之间存在着大量不同染色质环结构,其中包含与基因启动子成环有关的增强子240个;同时构建了秦川牛肌肉基因组调控元件之间的互作图谱,发现在4 716对启动子-增强子互作中存在142个肌肉发育相关基因受到总共 303 个增强子的调控,这些结果也为之后对肌肉发育的分子调控机制的研究提供了重要数据和理论支持。

3.3 三维基因组在羊遗传育种中的应用

羊作为最早被人类驯化的动物之一,在经过长期自然与人工的选择后,已经成为非常重要的经济动物。完整准确的参考基因组对相关动物生产性状的基因组选择和基因编辑至关重要。1995年,Crawford等[47]利用微卫星标记技术构建了绵羊的第一张遗传图谱。1998年,de Gortari等[48]绘制了第二代绵羊遗传图谱。2001年,美国、澳大利亚等国家多个实验室共同构建了绵羊的第三代遗传图谱,覆盖基因组范围越来越大,标记间的平均距离越来越近。2017年, Bickhart等[49]结合长读单分子测序、高保真短读测序以及基于Hi-C的染色质互作图谱,对家养山羊进行参考基因组的组装。新的组装结果与之前的相比,连续性提高了约400倍,并很好的解决了超过1kb的重复结构,为反刍动物遗传学提供了新的参考标准。2021年,西北农林科技大学和甘肃元生中新奶绵羊产业研究院共同组装完成了全国首个东佛里生绵羊高质量参考基因组。参考基因组的构建与组装能够为奶绵羊基因组学研究提供参考,从而帮助研究人员进一步探究影响高泌乳量、高生长速率、高繁殖率的遗传机制,并对与主要经济性状相关的基因进行整合,实现高效率遗传育种。
2020年,中国农业大学Li 等[50] 通过对来自世界各地的43个品种284个个体进行高深度全基因组测序,全面深入地揭示了绵羊在驯养、性状改良以及表型选择上的遗传机制,并且最终研究发现PDGFD基因对绵羊尾部脂肪堆积有着重要影响。该研究成果为之后的绵羊遗传育种研究提供了宝贵的基因组资源,也对今后开展分子育种、指导家养绵羊遗传改良具有重要意义。

3.4 三维基因组在模式动物中的应用

三维基因组除了在农业动物遗传育种上的应用外,还在许多模式动物的研究上发挥着重要作用。2017年,清华大学Du等 [51]开发了sisHi-C技术,并构建了染色体高级结构在小鼠早期胚胎发育过程中的重编程模型,揭示了哺乳动物受精前后染色体三维结构的亲本特异重编程过程。2020年4月,同济大学Chen等[52]同样利用sisHi-C技术,对小鼠体细胞核移植(SCNT)胚胎发育过程进行采样,然后对SCNT植入前胚胎的染色质结构进行分析并绘制其动态变化过程。该项目系统研究了小鼠SCNT胚胎发育过程中的染色体结构重塑过程,揭示了此过程中染色体高级结构的重编程模式,并为未来研究SCNT胚胎发育过程中的表观遗传屏障提供了思路和参考。
2020年,美国西北大学Yang等[53]通过RNA测序、CHIP、WGBS和Hi-C等技术对Tubingen品系斑马鱼的多个胚胎组织及成年组织进行了研究,展示了其组织特异性转录组、DNA甲基化图谱、顺式调控元件图谱及基因组三维结构,并通过与小鼠和人的功能元件进行比较,发现了它们之间差异和保守的基因调控模式及基因组结构,为今后在斑马鱼的遗传研究和人类疾病方面的研究提供了理论知识及数据资源。

4 小结

通过三维基因组学,可以清晰地认识到染色质的空间构象变化机制、基因的转录调控机制等,在Hi-C等技术的基础上,科学家对三维基因组空间结构认知越来越清晰,对未来相关农业生物技术的发展也具有重要意义。在未来的动物遗传育种中,随着各种理论与技术的产生和发展,分子育种与传统育种技术相结合是必然趋势,三维基因组更是在精准性、准确性等方面都有着巨大优势,定会在动物遗传多样性、重要经济性状基因挖掘、优良品种遗传育种的研究上发挥越来越重要的作用。

References

[1]
Green E D, Watson J D, Collins F S. Human Genome Project: twenty-five years of big biology. Nature, 2015, 526(7571): 29-31.
[2]
Dunham I, Kundaje A, Aldred S F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489 (7414): 57-74.
[3]
Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(14): 4381-4385.
[4]
Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science, 2002, 295(5558): 1306-1311.
We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.
[5]
Dekker J. The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nature Methods, 2006, 3 (1): 17-21.
Transcription regulation in higher eukaryotes is controlled by regulatory elements such as enhancers that are recognized by transcription factors. In many cases regulatory elements can be located at distances up to several megabases from their target genes. Recent evidence shows that long-range control of gene expression can be mediated through direct physical interactions between genes and these regulatory elements. Such looping interactions can be detected using the chromosome conformation capture (3C) methodology. Although 3C is experimentally straightforward, to draw meaningful conclusions one must carefully design 3C experiments and implement the conscientious use of controls. The general guidelines presented here should help experimental design and minimize misinterpretation of 3C experiments.
[6]
Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 2006, 38 (11): 1348-1354.
[7]
Dostie J, Richmond T A, Arnaout R A, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Research, 2006, 16(10): 1299-1309.
Physical interactions between genetic elements located throughout the genome play important roles in gene regulation and can be identified with the Chromosome Conformation Capture (3C) methodology. 3C converts physical chromatin interactions into specific ligation products, which are quantified individually by PCR. Here we present a high-throughput 3C approach, 3C-Carbon Copy (5C), that employs microarrays or quantitative DNA sequencing using 454-technology as detection methods. We applied 5C to analyze a 400-kb region containing the human beta-globin locus and a 100-kb conserved gene desert region. We validated 5C by detection of several previously identified looping interactions in the beta-globin locus. We also identified a new looping interaction in K562 cells between the beta-globin Locus Control Region and the gamma-beta-globin intergenic region. Interestingly, this region has been implicated in the control of developmental globin gene switching. 5C should be widely applicable for large-scale mapping of cis- and trans- interaction networks of genomic elements and for the study of higher-order chromosome structure.
[8]
Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.
[9]
Nagano T, Lubling Y, Stevens T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502 (7469): 59-64.
[10]
Liu C. In situ hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods in Molecular Biology (Clifton, N J), 2017, 1629: 155-166.
[11]
Lin D, Hong P, Zhang S, et al. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nature Genetics, 2018, 50 (5): 754-763.
Chromosome conformation capture (3C) technologies can be used to investigate 3D genomic structures. However, high background noise, high costs, and a lack of straightforward noise evaluation in current methods impede the advancement of 3D genomic research. Here we developed a simple digestion-ligation-only Hi-C (DLO Hi-C) technology to explore the 3D landscape of the genome. This method requires only two rounds of digestion and ligation, without the need for biotin labeling and pulldown. Non-ligated DNA was efficiently removed in a cost-effective step by purifying specific linker-ligated DNA fragments. Notably, random ligation could be quickly evaluated in an early quality-control step before sequencing. Moreover, an in situ version of DLO Hi-C using a four-cutter restriction enzyme has been developed. We applied DLO Hi-C to delineate the genomic architecture of THP-1 and K562 cells and uncovered chromosomal translocations. This technology may facilitate investigation of genomic organization, gene regulation, and (meta)genome assembly.
[12]
Fullwood M J, Liu M H, Pan Y F, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 2009, 462(7269): 58-64.
[13]
Li G L, Fullwood M J, Xu H, et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biology, 2010, 11(2): R22.
[14]
张富涵, 沈宗毅, 喻长远, 等. 三维基因组学研究进展. 生物工程学报, 2020, 36(12): 2791-2812.
Zhang F H, Shen Z Y, Yu C Y, et al. Advances in three-dimensional genomics. Chinese Journal of Biotechnology, 2020, 36(12): 2791-2812.
[15]
Die stofflichen grundlagen der vererbung im organischen Reich. Nature, 1906, 75(1935): 98-99.
[16]
Cremer T, Cremer M. Chromosome territories. Cold Spring Harbor Perspectives in Biology, 2010, 2(3): a003889.
[17]
Su J H, Zheng P, Kinrot S S, et al. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell, 2020, 182(6): 1641-1659.e26.
[18]
Branco M R, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biology, 2006, 4(5): e138.
[19]
Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
We describe Hi-C, a method that probes the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. We constructed spatial proximity maps of the human genome with Hi-C at a resolution of 1 megabase. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free, polymer conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.
[20]
Dixon J R, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature, 2015, 518 (7539): 331-336.
[21]
罗扶农, 何梦楠, 唐茜子, 等. 哺乳动物染色质三维结构单元的特征及其相互关系. 农业生物技术学报, 2019, 27(8): 1485-1497.
Luo F N, He M N, Tang Q Z, et al. The characteristics and interrelation of three-dimensional structural units of chromatin in mammals. Journal of Agricultural Biotechnology, 2019, 27(8): 1485-1497.
[22]
Nora E P, Lajoie B R, Schulz E G, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485 (7398): 381-385.
[23]
Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485 (7398): 376-380.
[24]
Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398):376-380.
[25]
Kaaij L J T, van der Weide R H, Ketting R F, et al. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Reports, 2018, 24(1): 1-10.e4.
[26]
Zhou Z, Li M, Cheng H, et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 2018, 9: 2648.
[27]
Dong Q L, Li N, Li X C, et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal: for Cell and Molecular Biology, 2018, 94(6): 1141-1156.
[28]
Wang M, Wang P, Lin M, et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nature Plants, 2018, 4 (2): 90-97.
[29]
Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Current Opinion in Cell Biology, 2013, 25(3): 387-394.
It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. Copyright © 2013. Published by Elsevier Ltd.
[30]
Sanyal A, Lajoie B R, Jain G, et al. The long-range interaction landscape of gene promoters. Nature, 2012, 489 (7414): 109-113.
[31]
Pope B D, Ryba T, Dileep V, et al. Topologically associating domains are stable units of replication-timing regulation. Nature, 2014, 515 (7527): 402-405.
[32]
Lupiáñez D G, Kraft K, Heinrich V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 2015, 161(5): 1012-1025.
Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome. Copyright © 2015 Elsevier Inc. All rights reserved.
[33]
Li L, Lyu X W, Hou C H, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular Cell, 2015, 58(2): 216-231.
Chromosomes of metazoan organisms are partitioned in the interphase nucleus into discrete topologically associating domains (TADs). Borders between TADs are formed in regions containing active genes and clusters of architectural protein binding sites. The transcription of most genes is repressed after temperature stress in Drosophila. Here we show that temperature stress induces relocalization of architectural proteins from TAD borders to inside TADs, and this is accompanied by a dramatic rearrangement in the 3D organization of the nucleus. TAD border strength declines, allowing for an increase in long-distance inter-TAD interactions. Similar but quantitatively weaker effects are observed upon inhibition of transcription or depletion of individual architectural proteins. Heat shock-induced inter-TAD interactions result in increased contacts among enhancers and promoters of silenced genes, which recruit Pc and form Pc bodies in the nucleolus. These results suggest that the TAD organization of metazoan genomes is plastic and can be reconfigured quickly. Copyright © 2015 Elsevier Inc. All rights reserved.
[34]
Despang A, Schöpflin R, Franke M, et al. Functional dissection of the Sox9-Kcnj 2 locus identifies nonessential and instructive roles of TAD architecture. Nature Genetics, 2019, 51 (8): 1263-127
[35]
答亮, 赵慕钧. 发育和癌症中染色质环结构变化. 生命的化学, 2002, 22(4): 329-331.
Da L, Zhao M J. Changes in chromatin ring structure in development and cancer. Chemistry of Life, 2002, 22(4): 329-331.
[36]
Rao S S P, Huntley M H, Durand N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159(7): 1665-1680.
[37]
Zhao Y, Hou Y, Xu Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nature Communications, 2021, 12: 2217.
[38]
Li F F, Wang D Y, Song R G, et al. The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos. Genome Biology, 2020, 21: 203.
[39]
Tian X M, Li R, Fu W W, et al. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Science China Life Sciences, 2020, 63(5): 750-763.
[40]
Jin L, Tang Q, Hu S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications, 2021, 12: 3715.
[41]
Ou J T. DNA molecular markers and animalsbreeding. Journal of Southwest University for Nationalities(Natural Sciens Edition), 2002, 28(4):524-529.
[42]
夏文财, 鲁绍雄. 牛遗传图谱的研究进展. 吉林畜牧兽医, 2008, 29(5): 14-16.
Xia W C, Lu S X. Progress of research on genetic map of cattle. Jilin Animal Husbandry and Veterinary Medicine, 2008, 29(5): 14-16.
[43]
Lee D, Cho M, Hong W Y, et al. Evolutionary analyses of hanwoo (Korean cattle)-specific single-nucleotide polymorphisms and genes using whole-genome resequencing data of a hanwoo population. Molecules and Cells, 2016, 39(9): 692-698.
[44]
Sasago N, Abe T, Sakuma H, et al. Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 2017, 88(1): 33-44.
We performed a genome-wide association study (GWAS) and candidate gene analysis to: (i) evaluate the effectiveness of the GWAS in our small population by performing GWAS for carcass weight (CW) and fatty acid composition; (ii) detect novel candidate regions affecting non-CW carcass traits, chemical composition and sugar; and (iii) evaluate the association of the candidate genes previously detected in CW and fatty acid composition with other economically important traits. A total of 574 Japanese Black cattle and 40 657 Single nucleotide polymorphisms were used. In addition, candidate gene analyses were performed to evaluate the association of three CW-related genes and two fatty acid-related genes with carcass traits, fatty acid composition, chemical composition and sugar. The significant regions with the candidate genes were detected for CW and fatty acid composition, and these results showed that a significant region would be detectable despite the small sample size. The novel candidate regions were detected on BTA23 for crude protein and on BTA19 for fructose. CW-related genes associated with the rib-eye area and fatty acid composition were identified, and fatty acid-related genes had no relationship with other traits. Moreover, the favorable allele of CW-related genes had an unfavorable effect on fatty acid composition.© 2016 Japanese Society of Animal Science.
[45]
Kim S J, Ka S, Ha J W, et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama. BMC Genomics, 2017, 18(1): 371.
[46]
曹修凯, 程杰, 王晓刚, 等. 动物染色质三维基因组及转录调控研究进展. 中国牛业科学, 2020, 46(3): 25-31, 83.
Cao X K, Cheng J, Wang X G, et al. Proceedings of 3D genome of animal chromatin and its transcriptional regulation. China Cattle Science, 2020, 46(3): 25-31, 83.
[47]
Crawford A M, Dodds K G, Ede A J, et al. An autosomal genetic linkage map of the sheep genome. Genetics, 1995, 140(2): 703-724.
We report the first extensive ovine genetic linkage map covering 2070 cM of the sheep genome. The map was generated from the linkage analysis of 246 polymorphic markers, in nine three-generation full-sib pedigrees, which make up the AgResearch International Mapping Flock. We have exploited many markers from cattle so that valuable comparisons between these two ruminant linkage maps can be made. The markers, used in the segregation analyses, comprised 86 anonymous microsatellite markers derived from the sheep genome, 126 anonymous microsatellites from cattle, one from deer, and 33 polymorphic markers of various types associated with known genes. The maximum number of informative meioses within the mapping flock was 222. The average number of informative meioses per marker was 140 (range 18-209). Linkage groups have been assigned to all 26 sheep autosomes.
[48]
de Gortari M J, Freking B A, Cuthbertson R P, et al. A second-generation linkage map of the sheep genome. Mammalian Genome, 1998, 9(3): 204-209.
A genetic map of Ovis aries (haploid n = 27) was developed with 519 markers (504 microsatellites) spanning approximately 3063 cM in 26 autosomal linkage groups and 127 cM (female specific) of the X Chromosome (Chr). Genotypic data were merged from the IMF flock (Crawford et al., Genetics 140, 703, 1995) and the USDA mapping flock. Seventy-three percent (370/504) of the microsatellite markers on the map are common to the USDA-ARS MARC cattle linkage map, with 27 of the common markers derived from sheep. The number of common markers per homologous linkage group ranges from 5 to 22 and spans a total of 2866 cM (sex average) in sheep and 2817 cM in cattle. Marker order within a linkage group was consistent between the two species with limited exceptions. The reported translocation between the telomeric end of bovine Chr 9 (BTA 9) and BTA 14 to form ovine Chr 9 is represented by a 15-cM region containing 5 common markers. The significant genomic conservation of marker order will allow use of linkage maps in both species to facilitate the search for quantitative trait loci (QTLs) in cattle and sheep.
[49]
Bickhart D M, Rosen B D, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 2017, 49(4): 643-650.
The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus) based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced what is, to our knowledge, the most continuous de novo mammalian assembly to date, with chromosome-length scaffolds and only 649 gaps. Our assembly represents a ∼400-fold improvement in continuity due to properly assembled gaps, compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, representing the largest repeat family and immune gene complex yet produced for an individual of a ruminant species.
[50]
Li X, Yang J, Shen M, et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 2020, 11: 2815.
[51]
Du Z H, Zheng H, Huang B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547(7662): 232-235.
[52]
Chen M, Zhu Q S, Li C, et al. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nature Communications, 2020, 11(1): 1813.
The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chromatin transforms to the metaphase state rapidly after SCNT along with the dissolution of typical 3D chromatin structure. Intriguingly, the genome undergoes a mitotic metaphase-like to meiosis metaphase II-like transition following activation. Subsequently, weak chromatin compartments and topologically associating domains (TADs) emerge following metaphase exit. TADs are further removed until the 2-cell stage before being progressively reestablished. Obvious defects including stronger TAD boundaries, aberrant super-enhancer and promoter interactions are found in SCNT embryos. These defects are partially caused by inherited H3K9me3, and can be rescued by Kdm4d overexpression. These observations provide insight into chromatin architecture reorganization during SCNT embryo development.
[53]
Yang H B, Luan Y, Liu T T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature, 2020, 588(7837): 337-343.
PDF(565 KB)

1994

Accesses

0

Citation

Detail

Sections
Recommended

/