Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 78-84    DOI: 10.13523/j.cb.2110043
    
Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding
CHEN Yi-he1,LI Xin-miao1,PENG Wei2,LEI Chu-zhao1,ZHAO Huang-qing1,ZHANG Zi-jing3,LIU Xian4,HUANG Yong-zhen1,**()
1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
2 Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
3 Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
4 Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China
Download: HTML   PDF(565KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three-dimensional genomics is a newly developed subject that studies the three-dimensional space and structure of genome. Based on considering genome sequence, gene structure and its regulatory elements, it studies the functions of gene replication, transcription, repair and regulation in biological processes and the three-dimensional structure of genome sequence in the nucleus. With the emergence and improvement of high-throughput sequencing technology, the research of three-dimensional genomics has developed rapidly. This paper focuses on the development process, research technology and structural level of three-dimensional genomics, and summarizes the application of three-dimensional genomics in animal genetics and breeding in recent years.



Key wordsThree-dimensional genome      Chromatin spatial structure      Animal genetics and breeding     
Received: 27 October 2021      Published: 05 May 2022
ZTFLH:  Q812  
Corresponding Authors: Yong-zhen HUANG     E-mail: hyzsci@nwafu.edu.cn
Cite this article:

CHEN Yi-he,LI Xin-miao,PENG Wei,LEI Chu-zhao,ZHAO Huang-qing,ZHANG Zi-jing,LIU Xian,HUANG Yong-zhen. Research Progress of Three-dimensional Genomics in Animal Genetics and Breeding. China Biotechnology, 2022, 42(4): 78-84.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2110043     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/78

[1]   Green E D, Watson J D, Collins F S. Human Genome Project: twenty-five years of big biology. Nature, 2015, 526(7571): 29-31.
doi: 10.1038/526029a
[2]   Dunham I, Kundaje A, Aldred S F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489 (7414): 57-74.
doi: 10.1038/nature11247
[3]   Langer-Safer P R, Levine M, Ward D C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(14): 4381-4385.
[4]   Dekker J, Rippe K, Dekker M, et al. Capturing chromosome conformation. Science, 2002, 295(5558): 1306-1311.
pmid: 11847345
[5]   Dekker J. The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nature Methods, 2006, 3 (1): 17-21.
pmid: 16369547
[6]   Simonis M, Klous P, Splinter E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 2006, 38 (11): 1348-1354.
doi: 10.1038/ng1896
[7]   Dostie J, Richmond T A, Arnaout R A, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Research, 2006, 16(10): 1299-1309.
pmid: 16954542
[8]   Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
doi: 10.1126/science.1181369 pmid: 19815776
[9]   Nagano T, Lubling Y, Stevens T J, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502 (7469): 59-64.
doi: 10.1038/nature12593
[10]   Liu C. In situ hi-C library preparation for plants to study their three-dimensional chromatin interactions on a genome-wide scale. Methods in Molecular Biology (Clifton, N J), 2017, 1629: 155-166.
[11]   Lin D, Hong P, Zhang S, et al. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nature Genetics, 2018, 50 (5): 754-763.
doi: 10.1038/s41588-018-0111-2 pmid: 29700467
[12]   Fullwood M J, Liu M H, Pan Y F, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 2009, 462(7269): 58-64.
doi: 10.1038/nature08497
[13]   Li G L, Fullwood M J, Xu H, et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biology, 2010, 11(2): R22.
doi: 10.1186/gb-2010-11-2-r22
[14]   张富涵, 沈宗毅, 喻长远, 等. 三维基因组学研究进展. 生物工程学报, 2020, 36(12): 2791-2812.
[14]   Zhang F H, Shen Z Y, Yu C Y, et al. Advances in three-dimensional genomics. Chinese Journal of Biotechnology, 2020, 36(12): 2791-2812.
[15]   Die stofflichen grundlagen der vererbung im organischen Reich. Nature, 1906, 75(1935): 98-99.
doi: 10.1038/075098a0
[16]   Cremer T, Cremer M. Chromosome territories. Cold Spring Harbor Perspectives in Biology, 2010, 2(3): a003889.
[17]   Su J H, Zheng P, Kinrot S S, et al. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell, 2020, 182(6): 1641-1659.e26.
doi: 10.1016/j.cell.2020.07.032
[18]   Branco M R, Pombo A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biology, 2006, 4(5): e138.
doi: 10.1371/journal.pbio.0040138
[19]   Lieberman-Aiden E, van Berkum N L, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326(5950): 289-293.
doi: 10.1126/science.1181369 pmid: 19815776
[20]   Dixon J R, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature, 2015, 518 (7539): 331-336.
doi: 10.1038/nature14222
[21]   罗扶农, 何梦楠, 唐茜子, 等. 哺乳动物染色质三维结构单元的特征及其相互关系. 农业生物技术学报, 2019, 27(8): 1485-1497.
[21]   Luo F N, He M N, Tang Q Z, et al. The characteristics and interrelation of three-dimensional structural units of chromatin in mammals. Journal of Agricultural Biotechnology, 2019, 27(8): 1485-1497.
[22]   Nora E P, Lajoie B R, Schulz E G, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485 (7398): 381-385.
doi: 10.1038/nature11049
[23]   Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485 (7398): 376-380.
doi: 10.1038/nature11082
[24]   Dixon J R, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485(7398):376-380.
doi: 10.1038/nature11082
[25]   Kaaij L J T, van der Weide R H, Ketting R F, et al. Systemic loss and gain of chromatin architecture throughout zebrafish development. Cell Reports, 2018, 24(1): 1-10.e4.
doi: 10.1016/j.celrep.2018.06.003
[26]   Zhou Z, Li M, Cheng H, et al. An intercross population study reveals genes associated with body size and plumage color in ducks. Nature Communications, 2018, 9: 2648.
doi: 10.1038/s41467-018-04868-4
[27]   Dong Q L, Li N, Li X C, et al. Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice. The Plant Journal: for Cell and Molecular Biology, 2018, 94(6): 1141-1156.
doi: 10.1111/tpj.13925
[28]   Wang M, Wang P, Lin M, et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nature Plants, 2018, 4 (2): 90-97.
doi: 10.1038/s41477-017-0096-3
[29]   Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Current Opinion in Cell Biology, 2013, 25(3): 387-394.
doi: 10.1016/j.ceb.2013.02.005 pmid: 23465541
[30]   Sanyal A, Lajoie B R, Jain G, et al. The long-range interaction landscape of gene promoters. Nature, 2012, 489 (7414): 109-113.
doi: 10.1038/nature11279
[31]   Pope B D, Ryba T, Dileep V, et al. Topologically associating domains are stable units of replication-timing regulation. Nature, 2014, 515 (7527): 402-405.
doi: 10.1038/nature13986
[32]   Lupiáñez D G, Kraft K, Heinrich V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell, 2015, 161(5): 1012-1025.
doi: S0092-8674(15)00377-3 pmid: 25959774
[33]   Li L, Lyu X W, Hou C H, et al. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular Cell, 2015, 58(2): 216-231.
doi: 10.1016/j.molcel.2015.02.023 pmid: 25818644
[34]   Despang A, Schöpflin R, Franke M, et al. Functional dissection of the Sox9-Kcnj 2 locus identifies nonessential and instructive roles of TAD architecture. Nature Genetics, 2019, 51 (8): 1263-127
doi: 10.1038/s41588-019-0466-z
[35]   答亮, 赵慕钧. 发育和癌症中染色质环结构变化. 生命的化学, 2002, 22(4): 329-331.
[35]   Da L, Zhao M J. Changes in chromatin ring structure in development and cancer. Chemistry of Life, 2002, 22(4): 329-331.
[36]   Rao S S P, Huntley M H, Durand N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159(7): 1665-1680.
doi: 10.1016/j.cell.2014.11.021
[37]   Zhao Y, Hou Y, Xu Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nature Communications, 2021, 12: 2217.
doi: 10.1038/s41467-021-22448-x
[38]   Li F F, Wang D Y, Song R G, et al. The asynchronous establishment of chromatin 3D architecture between in vitro fertilized and uniparental preimplantation pig embryos. Genome Biology, 2020, 21: 203.
doi: 10.1186/s13059-020-02095-z
[39]   Tian X M, Li R, Fu W W, et al. Building a sequence map of the pig pan-genome from multiple de novo assemblies and Hi-C data. Science China Life Sciences, 2020, 63(5): 750-763.
doi: 10.1007/s11427-019-9551-7
[40]   Jin L, Tang Q, Hu S, et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications, 2021, 12: 3715.
doi: 10.1038/s41467-021-23560-8
[41]   Ou J T. DNA molecular markers and animalsbreeding. Journal of Southwest University for Nationalities(Natural Sciens Edition), 2002, 28(4):524-529.
[42]   夏文财, 鲁绍雄. 牛遗传图谱的研究进展. 吉林畜牧兽医, 2008, 29(5): 14-16.
[42]   Xia W C, Lu S X. Progress of research on genetic map of cattle. Jilin Animal Husbandry and Veterinary Medicine, 2008, 29(5): 14-16.
[43]   Lee D, Cho M, Hong W Y, et al. Evolutionary analyses of hanwoo (Korean cattle)-specific single-nucleotide polymorphisms and genes using whole-genome resequencing data of a hanwoo population. Molecules and Cells, 2016, 39(9): 692-698.
doi: 10.14348/molcells.2016.0148
[44]   Sasago N, Abe T, Sakuma H, et al. Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Animal Science Journal, 2017, 88(1): 33-44.
doi: 10.1111/asj.12595 pmid: 27112906
[45]   Kim S J, Ka S, Ha J W, et al. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama. BMC Genomics, 2017, 18(1): 371.
doi: 10.1186/s12864-017-3742-2
[46]   曹修凯, 程杰, 王晓刚, 等. 动物染色质三维基因组及转录调控研究进展. 中国牛业科学, 2020, 46(3): 25-31, 83.
[46]   Cao X K, Cheng J, Wang X G, et al. Proceedings of 3D genome of animal chromatin and its transcriptional regulation. China Cattle Science, 2020, 46(3): 25-31, 83.
[47]   Crawford A M, Dodds K G, Ede A J, et al. An autosomal genetic linkage map of the sheep genome. Genetics, 1995, 140(2): 703-724.
doi: 10.1093/genetics/140.2.703 pmid: 7498748
[48]   de Gortari M J, Freking B A, Cuthbertson R P, et al. A second-generation linkage map of the sheep genome. Mammalian Genome, 1998, 9(3): 204-209.
pmid: 9501303
[49]   Bickhart D M, Rosen B D, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 2017, 49(4): 643-650.
doi: 10.1038/ng.3802 pmid: 28263316
[50]   Li X, Yang J, Shen M, et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 2020, 11: 2815.
doi: 10.1038/s41467-020-16485-1
[51]   Du Z H, Zheng H, Huang B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature, 2017, 547(7662): 232-235.
doi: 10.1038/nature23263
[52]   Chen M, Zhu Q S, Li C, et al. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nature Communications, 2020, 11(1): 1813.
doi: 10.1038/s41467-020-15607-z pmid: 32286279
[53]   Yang H B, Luan Y, Liu T T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish. Nature, 2020, 588(7837): 337-343.
doi: 10.1038/s41586-020-2962-9
No related articles found!