Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 111-119    DOI: 10.13523/j.cb.2110017
    
The Development Trend of Stem Cell Technology and Regenerative Medicine
ZHENG Ying1,2,*(),DENG Shi-bi1,CHEN Fang1,2
1 Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610299, China
2 Department of Library,Information and Archives Management, School of Economics and Management,University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(848KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Since the 20th century, the field of stem cells and regenerative medicine has always been one of the hot frontiers in the international biomedical field. It plays an irreplaceable role in safeguarding human life and health, improving the quality of human life, and extending human life. Therefore, major technological countries such as the United States, European countries, Japan, and China have included the field in their national strategies for scientific research and industrial development, and have encouraged innovation and development in this field through special support, policy subsidies, and legislative guarantees. This article analyzes the international technology development strategy and research and development trends of stem cells and regenerative medicine in recent years, discovers the international strategic layout rules, reveals leading strengths and weaknesses of China, and try to provide relevant references for the development of China in the field.



Key wordsStem cells      Regenerative medicine      Science and technology strategy      Science and technology development trend     
Received: 13 October 2021      Published: 05 May 2022
ZTFLH:  Q819  
Corresponding Authors: Ying ZHENG     E-mail: zhengy@clas.ac.cn
Cite this article:

ZHENG Ying,DENG Shi-bi,CHEN Fang. The Development Trend of Stem Cell Technology and Regenerative Medicine. China Biotechnology, 2022, 42(4): 111-119.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2110017     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/111

[1]   Technavio. Cell therapy market by type, application, and geography - forecast and analysis 2022-2026.[2020-09-02]. https://www.technavio.com/report/global-cell-therapy-market.
[2]   ReportLink. Global stem cells industry.[2020-02-04]. https://www.reportlinker.com/p02043289/Global-Mesenchymal-Stem-Cells-Industry.html?utm_source=GNW#backAction=1.
[3]   California’s Stem Cell Agency. CIRM 2019-2020 AR FINAL.[2020-08-24]. https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CIRM%202019-2020%20AR%20FINAL_082420.pdf.
[4]   Tosic J, Kim G J, Pavlovic M, et al. Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nature Cell Biology, 2019, 21:1518-1531.
doi: 10.1038/s41556-019-0423-1
[5]   程唯珈. “逆转”细胞命运.[2018-07-30]. http://news.sciencenet.cn/htmlnews/2018/7/416068.shtm.
[5]   Cheng W J. “Reverse” cell fate.[2018-07-30]. http://news.sciencenet.cn/htmlnews/2018/7/416068.shtm.
[6]   Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution. Nature, 2020, 582(7813):1-6.
[7]   William G, Itys C. Mengjun W, et al. A functional link between nuclear RNA decay and transcriptional control mediated by the polycomb repressive complex 2. Cell Reports, 2019, 29(7): 1811e6.
[8]   Yin J, Leavenworth J W, Li Y, et al. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(52): 15988-15993.
[9]   Tran V, Lim C, Xie J, et al. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science, 2012, 338(6107): 679-682.
doi: 10.1126/science.1226028
[10]   Ceto S, Sekiguchi K J, Takashima Y, et al. Neural stem cell grafts form extensive synaptic networks that integrate with host circuits after spinal cord injury. Cell Stem Cell, 2020, 27(3): 430-440.e5.
doi: 10.1016/j.stem.2020.07.007
[11]   Chen Y J, Cao J Y, Xiong M, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell, 2015, 17(2): 233-244.
doi: 10.1016/j.stem.2015.06.001
[12]   Wang T S, Pine A R, Kotini A G, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell, 2021, 28(6): 1074-1089.e7.
doi: 10.1016/j.stem.2021.01.011
[13]   Ji S, Zhu L, Gao Y, et al. Baf60b-mediated ATM-p 53 activation blocks cell identity conversion by sensing chromatin opening. Cell Research, 2017, 27(5): 642-656.
doi: 10.1038/cr.2017.36
[14]   Choi S, Zhang B, Ma S, et al. Corticosterone inhibits GAS 6 to govern hair follicle stem-cell quiescence. Nature, 2021, 592(7854): 428-432.
doi: 10.1038/s41586-021-03417-2
[15]   Xie Y H, Chen D M, Jiang K J, et al. Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-α axis. Cell Stem Cell, 2022, 29(1): 70-85.e6.
doi: 10.1016/j.stem.2021.09.009
[16]   Quist S R, Quist J. Keep quiet-how stress regulates hair follicle stem cells. Signal Transduction and Targeted Therapy, 2021, 6(1): 1-2.
doi: 10.1038/s41392-020-00451-w
[17]   Gonzales K A U, Polak L, Matos I, et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science, 2021, 374(6571): eabh2444.
doi: 10.1126/science.abh2444
[18]   Zhao X, Garcia J Q, Tong K, et al. Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. Science Advances, 2021, 7(24): eabg1244.
doi: 10.1126/sciadv.abg1244
[19]   Wang L, Li J, Zhou H, et al. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nature communications, 2021, 12(1): 1-15.
doi: 10.1038/s41467-020-20314-w
[20]   Nashchekin D, Busby L, Jakobs M, et al. Symmetry breaking in the female germline cyst. Science, 2021, 374(6569): 874-879.
doi: 10.1126/science.abj3125 pmid: 34762476
[21]   Zhao J, Lu P, Wan C, et al. Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nature Communications, 2021, 12(1): 6839.
doi: 10.1038/s41467-021-27172-0
[22]   Regev A, Teichmann S A, Lander E S, et al. The human cell atlas. eLife, 2017, 6: e27041.
doi: 10.7554/eLife.27041
[23]   Quinn J J, Jones M G, Okimoto R A, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371(6532): eabc1944.
doi: 10.1126/science.abc1944
[24]   Chow K H K, Budde M W, Granados A A, et al. Imaging cell lineage with a synthetic digital recording system. Science, 2021, 372(6538): eabb3099.
doi: 10.1126/science.abb3099
[25]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024
[26]   de Soysa T Y, Ranade S S, Okawa S, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature, 2019, 572:120-124.
doi: 10.1038/s41586-019-1414-x
[27]   王欢. 日本京都大学利用人体诱导多能干细胞治疗帕金森.[2018-11-15]. https://tech.huanqiu.com/article/9CaKrnKeRzv.
[27]   Wang H. Treatment of Parkinson’s disease with human induced pluripotent stem cells at Kyoto University, Japan.[2018-11-15]. https://tech.huanqiu.com/article/9CaKrnKeRzv.
[28]   Hou C Y. Clinical trial underway for a natural killer cell therapy.[2019-05-07]. https://www.the-scientist.com/news-opinion/clinical-trial-underway-for-a-natural-killer-cell-therapy-65845.
[29]   Kasper D M, Hintzen J, Wu Y Y, et al. The N-glycome regulates the endothelial-to-hematopoietic transition. Science (New York), 2020, 370(6521): 1186-1191.
[30]   Colomb F, Giron L B, Kuri-Cervantes L, et al. Sialyl-LewisX glycoantigen is enriched on cells with persistent HIV transcription during therapy. Cell Reports, 2020, 32(5): 107991.
doi: 10.1016/j.celrep.2020.107991
[31]   Bao E L, Nandakumar S K, Liao X, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature, 2020, 586(7831):769-775.
doi: 10.1038/s41586-020-2786-7
[32]   Ivanovs A, Rybtsov S, Anderson R A, et al. Vast self-renewal potential of human AGM region HSCs dramatically declines in the umbilical cord blood. Stem Cell Reports, 2020, 15(4): 811-816.
doi: 10.1016/j.stemcr.2020.08.008
[33]   Min H, Xu L, Parrott R, et al. Mesenchymal stromal cells reprogram monocytes and macrophages with processing bodies. Stem Cells, 2020, 39(1): 115-128.
doi: 10.1002/stem.3292
[34]   Shen B, Tasdogan A, Ubellacker J M, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 591, 438-444.
doi: 10.1038/s41586-021-03298-5
[35]   Heyde A, Rohde D, McAlpine C S, et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell, 2021, 184(5): 1348-1361.
doi: 10.1016/j.cell.2021.01.049
[36]   Yu L, Wei Y, Duan J, et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature, 2021, 591 (7851): 620-626.
doi: 10.1038/s41586-021-03356-y
[37]   Manian K V, Galloway C A, Dalvi S, et al. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell, 2021, 28(5): 978.
doi: 10.1016/j.stem.2021.03.024
[38]   L?hmussaar K, Oka R, Espejo Valle-Inclan J, et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell, 2021, 28(8): 1380-1396.
doi: 10.1016/j.stem.2021.03.012
[39]   Huang L, Desai R, Conrad D N, et al. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell, 2021, 28(6): 1090-1104.
doi: 10.1016/j.stem.2021.03.022
[40]   Xu P F, Borges R M, Fillatre J, et al. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nature Communications, 2021, 12: 3277.
doi: 10.1038/s41467-021-23653-4
[41]   Hofbauer P, Jahnel S M, Papai N, et al. Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 2021, 184(12): 3299-3317.e22.
doi: 10.1016/j.cell.2021.04.034 pmid: 34019794
[42]   Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28(10): 1740-1757.e8.
doi: 10.1016/j.stem.2021.07.010 pmid: 34407456
[43]   Yoshino T, Suzuki T, Nagamatsu G, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science, 2021, 373(6552): eabe0237.
doi: 10.1126/science.abe0237
[44]   Noor N, Shapira A, Edri R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(11): 1900344.
[45]   Wang D S, Wang J Q, Bai L Y, et al. Long-term expansion of pancreatic islet organoids from resident procr+ progenitors. Cell, 2020, 180(6): 1198-1211.e19.
doi: 10.1016/j.cell.2020.02.048
[46]   综合开发研究院. 国际再生医学产业现状及展望.[2020-02-19]. https://www.thepaper.cn/newsDetail_forward_5566835.
[46]   Comprehensive Development Research Institute. Current situation and Prospect of international regenerative medicine industry.[2020-02-19]. https://www.thepaper.cn/newsDetail_forward_5566835.
[47]   Han X P, Wang R Y, Zhou Y C, et al. Mapping the mouse cell atlas by microwell-seq. Cell, 2018, 172(5): 1091-1107.e17.
doi: 10.1016/j.cell.2018.02.001
[48]   Peng G, Suo S, Cui G, et al. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572 (7770): 528-532.
doi: 10.1038/s41586-019-1469-8
[49]   Zhong S, Zhang S, Fan X, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature, 2018, 555(7697):524.
doi: 10.1038/nature25980
[50]   Zhao H, Huang X, Liu Z, et al. Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nature Metabolism, 2021, 3 (3): 352-365.
doi: 10.1038/s42255-021-00364-0 pmid: 33723463
[51]   Cui T T, Jiang L Y, Li T D, et al. Derivation of mouse haploid trophoblast stem cells. Cell Reports, 2019, 26(2): 407-414.e5.
doi: 10.1016/j.celrep.2018.12.067
[52]   Li W P, Yang L G, He Q, et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell, 2019, 25(1): 54-68.e5.
doi: 10.1016/j.stem.2019.06.008
[53]   Zhang K, Zhang L D, Liu W M, et al. In vitro expansion of primary human hepatocytes with efficient liver repopulation capacity. Cell Stem Cell, 2018, 23(6): 806-819.e4.
doi: S1934-5909(18)30499-5 pmid: 30416071
[54]   Deng X, Zhang X, Li W P, et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell, 2018, 23(1): 114-122.e3.
doi: 10.1016/j.stem.2018.05.022
[55]   Hu W X, Qiu B L, Guan W Q, et al. Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015, 17(2): 204-212.
doi: 10.1016/j.stem.2015.07.006
[56]   Zhao T, Fu Y, Zhu J L, et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell, 2018, 23(1): 31-45.e7.
doi: 10.1016/j.stem.2018.05.025
[57]   Wang L, Zhang P P, Wei Y L, et al. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood, 2011, 118(15): 4102-4110.
doi: 10.1182/blood-2011-05-353235 pmid: 21849483
[58]   Tao T T, Wang Y Q, Chen W W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab on a Chip, 2019, 19(6): 948-958.
doi: 10.1039/C8LC01298A
[59]   Chen J, Liu H, Liu J, et al. H3K 9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 2013, 45(1):34-42.
doi: 10.1038/ng.2491
[60]   Cao S T, Yu S Y, Li D W, et al. Chromatin accessibility dynamics during chemical induction of pluripotency. Cell Stem Cell, 2018, 22(4): 529-542.e5.
doi: 10.1016/j.stem.2018.03.005
[61]   Zhao J, Wang M, Chang L, et al. RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nature Cell Biology, 2020, 22(4):439-452.
doi: 10.1038/s41556-020-0484-1
[62]   郭琳, 陈捷凯, 裴端卿. 维生素C与表观遗传调控. 科学通报, 2014, 59(S2): 2833-2839.
[62]   Guo L, Chen J K, Pei D Q. Vitamin C and epigenetic regulation. Chinese Science Bulletin, 2014, 59(S2): 2833-2839.
[63]   Zhu H F, Xie W X, Xu D C, et al. DNA demethylase ROS 1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. PNAS, 2018, 115(42): E9962-E9970.
[64]   Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature Cell Biology, 2013, 15(7):829-838.
doi: 10.1038/ncb2765
[65]   Xu D C, Jin T J, Zhu H, et al. TBK 1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell, 2018, 174(6): 1477-1491.e19.
doi: 10.1016/j.cell.2018.07.041
[66]   Yang H, Wang G, Sun H, et al. Species-dependent neuropathology in transgenic SOD1 pigs. Cell Research, 2014, 24(4):464-481.
doi: 10.1038/cr.2014.25
[67]   Jiang Y Z, Cai Y Z, Zhang W, et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Translational Medicine, 2016, 5(6): 733-744.
doi: 10.5966/sctm.2015-0192
[68]   Xu L, Wang J, Liu Y L, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New England Journal of Medicine, 2019, 381(13): 1240-1247.
doi: 10.1056/NEJMoa1817426
[1] DENG Jia-qiang, LI Wei-yao, ZHONG Li-jun, YU Shu-min. Research Progress on the Relationship Between Autophagy and Mesenchymal Stem Cell Senescence[J]. China Biotechnology, 2022, 42(3): 55-61.
[2] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[3] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[4] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[5] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[6] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[7] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[8] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[9] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[10] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[11] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[12] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[13] Yue-lei FAN,Jiao LU,Da-ming CHEN,Kai-yun MAO. Strategies for Stem Cell Patent Evaluation and Patent Transfer and Transformation[J]. China Biotechnology, 2019, 39(1): 99-106.
[14] Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation[J]. China Biotechnology, 2018, 38(8): 76-83.
[15] Yan ZHENG,Huan YAO,Ke YANG. SFRP5 Inhibites Osteogenic Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Induced by BMP9[J]. China Biotechnology, 2018, 38(7): 7-13.