Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 68-77    DOI: 10.13523/j.cb.2110002
    
Research Progress on Biological Functions of miR-138
RAN Hong-biao,WANG Hui**(),ZHONG Jin-cheng**()
Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China
Download: HTML   PDF(1421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

microRNAs(miRNAs)are highly conserved non-coding small RNA in eukaryotes. They have many biological functions and can participate in the regulation of disease, cell proliferation and differentiation and other biological process. miR-138 as a tumor suppressor has been widely studied in tumorigenesis and therapy and also plays a regulatory role in cardiovascular and neurological disorder processes, osteogenic differentiation, adipogenesis and ovarian function maintenance. In this paper, prospects for future research direction of miR-138 are analyzed and discussed on the basis of summarizing and analyzing the latest research progress of miR-138 related functions, aiming to provide reference and theoretical basis for exploring miR-138 biological functions in the future.



Key wordsmiR-138      Disease      Osteogenic differentiation      Lipid      Ovarian     
Received: 05 October 2021      Published: 05 May 2022
ZTFLH:  Q52  
Corresponding Authors: Hui WANG,Jin-cheng ZHONG     E-mail: wanghui892321@sina.cn;zhongjincheng518@126.com
Cite this article:

RAN Hong-biao,WANG Hui,ZHONG Jin-cheng. Research Progress on Biological Functions of miR-138. China Biotechnology, 2022, 42(4): 68-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2110002     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/68

Fig.1 Homology comparison of precursor miR-138 According to the similarity of precursor sequences on different chromosomes, they were divided into two groups (a) and (b) for comparison. Chromosome 2: gga-miR-138-1; Chromosome 3: hsa-miR-138-1、eca-miR-138-2; Chromosome 8 : rno-miR-138-1、mmu-miR-138-2; Chromosome 9: mmu-miR-138-1; Chromosome 11: gga-miR-138-2; Chromosome 13: ssc-miR-138; Chromosome 16: ggo-miR-138、hsa-miR-138-2、ptr-miR-138、eca-miR-138-1; Chromosome 18: bta-miR-138-2; Chromosome 19: rno-miR-138-2; Chromosome 20: mml-miR-138; Chromosome 22: bta-miR-138-1
肿瘤 靶标基因 功能 参考文献
肺癌 SOX4/PD-L1 抑制细胞增殖、聚集和迁移,诱导细胞凋亡/抑制肿瘤生长,激活免疫系统 [9-10]
胃癌 DEK/E2F2 抑制细胞增殖、迁移,阻碍细胞生长并促进凋亡 [11-12]
肝癌 FOXC1/EZH2 抑制肝癌细胞的转移和生长能力/增强预后敏感性 [13-14]
宫颈癌 H2AX/PLXNB2 抑制癌细胞增殖、侵袭,增加凋亡和增强化疗敏感性/抑制细胞活性与侵袭能力 [15-16]
乳腺癌 HIF-1a 减弱细胞增殖及活性,增强细胞凋亡及药物敏感性 [17]
膀胱癌 survivin/SIRT1 抑制细胞增殖和侵袭/促进细胞凋亡,抑制恶性增殖 [18-19]
卵巢癌 EZH2/SIRT1/Bcl-2 抑制细胞增殖和促进凋亡、增强癌细胞药物敏感性 [20]
胶质母细胞瘤 CD44/CREB1 抑制细胞增殖和迁移,增强细胞凋亡/抑制肿瘤细胞增殖、侵袭,促进细胞凋亡 [2,21]
神经胶质瘤 IGF2BP2 抑制体外肿瘤细胞增殖、迁移,通过抑制上皮细胞向间充质细胞转移减缓肿瘤侵袭能力 [22]
神经母细胞瘤 DEK/CCND3 抑制细胞增殖生长,促进细胞凋亡敏感性/抑制肿瘤细胞聚集、侵袭和活性 [23-24]
黑色素瘤 CD105/TCF4 抑制肿瘤细胞侵袭能力/抑制细胞增殖、侵袭及转化 [25-26]
胆管癌 SOX4 降低肿瘤细胞存活率,与不良预后存在相关性 [27]
前列腺癌 FOXC1 抑制肿瘤恶性增殖,与淋巴结转移与预后效果存在关联 [28]
结直肠癌 PDK1/NFIB/4EBP1/CCND1 降低耐药性,促进癌细胞凋亡/抑制细胞迁移及耐药能力 [29-30]
[31-32]
骨肉瘤 ROCK1 降低细胞存活率,与预后效果不佳有关 [33]
Table1 miR-138 affects tumor growth and chemosensitivity
Fig.2 Regulation network of miR-138 Red color: Has been shown to be involved in regulating adipogenesis; Yellow color: Potential target genes of miR-138 in adipogenesis (The relevant reference [73-86] is enclosed in parentheses); White color: None report in adipogenesis
[1]   金吉春, 金星林. microRNA的概述及其研究. 医学研究生学报, 2013, 26(10): 1109-1112.
[1]   Jin J C, Jin X L. The overview and research of microRNA. Journal of Medical Postgraduates, 2013, 26(10): 1109-1112.
[2]   Zhang C, Wang Q, Zhou X W, et al. microRNA-138 modulates glioma cell growth, apoptosis and invasion through the suppression of the AKT/mTOR signalling pathway by targeting CREB1. Oncology Reports, 2020, 44(6): 2559-2568.
doi: 10.3892/or.2020.7809 pmid: 33125147
[3]   Liao K, Niu F, Hu G K, et al. Morphine-mediated release of miR-138 in astrocyte-derived extracellular vesicles promotes microglial activation. Journal of Extracellular Vesicles, 2020, 10(1): e12027.
[4]   Li C X, Wang F, Miao P, et al. miR-138 increases depressive-like behaviors by targeting SIRT1 in Hippocampus. Neuropsychiatric Disease and Treatment, 2020, 16: 949-957.
doi: 10.2147/NDT.S237558
[5]   Li J B, Wang H Y, Yao Y, et al. Overexpression of microRNA-138 alleviates human coronary artery endothelial cell injury and inflammatory response by inhibiting the PI3K/Akt/ENOS pathway. Journal of Cellular and Molecular Medicine, 2017, 21(8): 1482-1491.
doi: 10.1111/jcmm.13074
[6]   Bai X M, Shao J F, Zhou S J, et al. Inhibition of lung cancer growth and metastasis by DHA and its metabolite, RvD1, through miR-138-5p/FOXC1 pathway. Journal of Experimental & Clinical Cancer Research: CR, 2019, 38(1): 479.
[7]   Gerasymchuk M, Cherkasova V, Kovalchuk O, et al. The role of microRNAs in organismal and skin aging. International Journal of Molecular Sciences, 2020, 21(15): 5281.
doi: 10.3390/ijms21155281
[8]   Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Current Biology, 2002, 12(9): 735-739.
pmid: 12007417
[9]   Xing L, Ning Z, Jun D, et al. microRNA-138 targets SOX 4 to regulate the proliferation and metastasis of human lung cancer cells. Journal of B U ON: Official Journal of the Balkan Union of Oncology, 2020, 25(2): 835-841.
[10]   Song N N, Li P, Song P P, et al. microRNA-138-5p suppresses non-small cell lung cancer cells by targeting PD-L1/PD-1 to regulate tumor microenvironment. Frontiers in Cell and Developmental Biology, 2020, 8: 540.
doi: 10.3389/fcell.2020.00540
[11]   Zhang W, Liao K, Liu D N. miR-138-5p inhibits the proliferation of gastric cancer cells by targeting DEK. Cancer Management and Research, 2020, 12: 8137-8147.
doi: 10.2147/CMAR.S253777 pmid: 32982411
[12]   Yu J R, Fang C, Zhang Z Y, et al. H19 rises in gastric cancer and exerts a tumor-promoting function via miR-138/E2F2 axis. Cancer Management and Research, 2020, 12: 13033-13042.
doi: 10.2147/CMAR.S267357
[13]   Yang G, Guo S, Liu H T, et al. miR-138-5p predicts negative prognosis and exhibits suppressive activities in hepatocellular carcinoma HCC by targeting FOXC1. European Review for Medical and Pharmacological Sciences, 2020, 24(17): 8788-8800.
doi: 22817 pmid: 32964967
[14]   Zeng T H, Luo L, Huang Y Y, et al. Upregulation of miR-138 increases sensitivity to cisplatin in hepatocellular carcinoma by regulating EZH2. BioMed Research International, 2021, 2021: 6665918.
[15]   Yuan M, Zhao S T, Chen R, et al. microRNA-138 inhibits tumor growth and enhances chemosensitivity in human cervical cancer by targeting H2AX. Experimental and Therapeutic Medicine, 2020, 19(1): 630-638.
doi: 10.3892/etm.2019.8238 pmid: 31853324
[16]   Babion I, Miok V, Jaspers A, et al. Identification of deregulated pathways, key regulators, and novel miRNA-mRNA interactions in HPV-mediated transformation. Cancers, 2020, 12(3): 700.
doi: 10.3390/cancers12030700
[17]   黄果, 王佑权, 陈娟. miRNA-138-5p靶向抑制HIF-1α表达对乳腺癌MCF-7细胞顺铂耐药的逆转作用及其机制. 吉林大学学报(医学版), 2021, 47(2): 360-368.
[17]   Huang G, Wang Y Q, Chen J. Reverse effect of miR-138-5p targeted inhibition of HIF-1α expression on cisplatin resistance of breast cancer MCF-7 cells and its mechanism. Journal of Jilin University (Medicine Edition), 2021, 47(2): 360-368.
[18]   Yang R, Liu M H, Liang H W, et al. miR-138-5p contributes to cell proliferation and invasion by targeting survivin in bladder cancer cells. Molecular Cancer, 2016, 15(1): 82.
doi: 10.1186/s12943-016-0569-4
[19]   黄卓雅, 缪伟贤, 王晓冰, 等. miR-138靶向调控SIRT1表达及其对膀胱癌细胞增殖和凋亡的影响. 临床肿瘤学杂志, 2017, 22(4): 298-302.
[19]   Huang Z Y, Miao W X, Wang X B, et al. Effects of miR-138 on cell proliferation and apoptosis of bladder cancer via targeting SIRT1. Chinese Clinical Oncology, 2017, 22(4): 298-302.
[20]   Zhang Y, Ai H, Fan X, et al. Knockdown of long non-coding RNA HOTAIR reverses cisplatin resistance of ovarian cancer cells through inhibiting miR-138-5p-regulated EZH2 and SIRT1. Biological Research, 2020, 53(1): 18.
doi: 10.1186/s40659-020-00286-3 pmid: 32349783
[21]   Yeh M, Wang Y Y, Yoo J Y, et al. microRNA-138 suppresses glioblastoma proliferation through downregulation of CD44. Scientific Reports, 2021, 11: 9219.
doi: 10.1038/s41598-021-88615-8
[22]   Yang Y, Liu X Y, Cheng L L, et al. Tumor suppressor microRNA-138 suppresses low-grade glioma development and metastasis via regulating IGF2BP2. OncoTargets and Therapy, 2020, 13: 2247-2260.
doi: 10.2147/OTT.S232795 pmid: 32214825
[23]   Miao J, Jing J, Shao Y X, et al. microRNA-138 promotes neuroblastoma SH-SY5Y cell apoptosis by directly targeting DEK in Alzheimer’s disease cell model. BMC Neuroscience, 2020, 21(1): 33.
doi: 10.1186/s12868-020-00579-z pmid: 32736520
[24]   Wu H G, Wang C, Liu Y J, et al. miR-138-5p suppresses glioblastoma cell viability and leads to cell cycle arrest by targeting cyclin D3. Oncology Letters, 2020, 20(5): 264.
[25]   魏巍, 杨金龙, 陈峻江. miR-138通过靶向下调endoglin抑制黑素瘤细胞侵袭的作用及机制. 中国皮肤性病学杂志, 2021, 35(7): 746-753.
[25]   Wei W, Yang J L, Chen J J. Mechanism of miR-138 inhibiting the invasion of melanoma cell invasion by targeted downregulation of endoglin. The Chinese Journal of Dermatovenereology, 2021, 35(7): 746-753.
[26]   魏丽, 连红梅, 刘鹏, 等. miR-138-5p靶向TCF4调节眼葡萄膜黑色素瘤细胞的恶性生物学行为. 安徽医科大学学报, 2021, 56(6): 887-893.
[26]   Wei L, Lian H M, Liu P, et al. miR-138-5p targeting TCF 4 regulates the malignant biological behavior of ocular uveal melanoma cells. Acta Universitatis Medicinalis Anhui, 2021, 56(6): 887-893.
[27]   Zheng Y, Zhang J, Ye B. miR-138 mediates sorafenib-induced cell survival and is associated with poor prognosis in cholangiocarcinoma cells. Clinical and Experimental Pharmacology & Physiology, 2020, 47(3): 459-465.
[28]   Zhang D P, Liu X D, Zhang Q W, et al. miR-138-5p inhibits the malignant progression of prostate cancer by targeting FOXC1. Cancer Cell International, 2020, 20: 297.
doi: 10.1186/s12935-020-01386-6
[29]   Wang Y, Zhang D, Li Y, et al. miR-138 suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer. OncoTargets and Therapy, 2020, 13: 3607-3618.
doi: 10.2147/OTT.S242929 pmid: 32431512
[30]   Xu W F, Chen B B, Ke D S, et al. microRNA-138-5p targets the NFIB-Snail 1 axis to inhibit colorectal cancer cell migration and chemoresistance. Cancer Cell International, 2020, 20: 475.
doi: 10.1186/s12935-020-01573-5
[31]   Chen L Y, Wang L, Ren Y X, et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Molecular Cancer, 2020, 19(1): 164.
doi: 10.1186/s12943-020-01272-9
[32]   王秋爽, 王琦, 孙华文, 等. microRNA-138通过靶向作用于CCND1抑制结肠癌细胞增殖. 临床和实验医学杂志, 2020, 19(7): 733-737.
[32]   Wang Q S, Wang Q, Sun H W, et al. microRNA-138 inhibits colon cancer cell proliferation by targeting CCND1. Journal of Clinical and Experimental Medicine, 2020, 19(7): 733-737.
[33]   Roberto G M, Lira R C, Delsin L E, et al. microRNA-138-5p as a worse prognosis biomarker in pediatric, adolescent, and young adult osteosarcoma. Pathology Oncology Research: POR, 2020, 26(2): 877-883.
doi: 10.1007/s12253-019-00633-0
[34]   Wu Y X, He S, Xu X H. microRNA-138 regulates cell adhesion-mediated drug resistance phenotype by targeting SGTA in non-Hodgkin’s lymphoma. Chinese Journal of Hematology, 2018, 39(8): 668-673.
doi: 10.3760/cma.j.issn.0253-2727.2018.08.011 pmid: 30180469
[35]   Paczkowska J, Giefing M. microRNA signature in classical Hodgkin lymphoma. Journal of Applied Genetics, 2021, 62(2): 281-288.
doi: 10.1007/s13353-021-00614-7 pmid: 33544339
[36]   Manafi Shabestari R, Alikarami F, Bashash D, et al. Overexpression of miR-138 inhibits cell growth and induces caspase-mediated apoptosis in acute promyelocytic leukemia cell line. International Journal of Molecular and Cellular Medicine, 2018, 7(1): 24-31.
doi: 10.22088/IJMCM.BUMS.7.1.24 pmid: 30234070
[37]   郭涛, 纪冬梅, 李艳平, 等. miR-138-5p靶向HIF-1α影响人白血病K562细胞增殖和侵袭转移. 局解手术学杂志, 2020, 29(4): 272-277.
[37]   Guo T, Ji D M, Li Y P, et al. Effect of miR-138-5p tar...geting HIF-1α on proliferation and invasion and metastasis of human leukemia K562 cells. Journal of Regional Anatomy and Operative Surgery, 2020, 29(4): 272-277.
[38]   黄春燕. microRNA-138-5p调控急性髓系白血病患者PD-L1表达的研究. 广州: 暨南大学, 2019.
[38]   Huang C Y. microRNA-138-5p regulates the expression of PD-L1 in patients with acute myeloid leukemia. Guangzhou: Jinan University, 2019.
[39]   Jing L, Jin C M, Lu Y, et al. Investigation of microRNA expression profiles associated with human alcoholic cardiomyopathy. Cardiology, 2015, 130(4): 223-233.
doi: 10.1159/000370028
[40]   Nardelli C, Granata I, Iaffaldano L, et al. miR-138/miR-222 overexpression characterizes the miRNome of amniotic mesenchymal stem cells in obesity. Stem Cells and Development, 2017, 26(1): 4-14.
doi: 10.1089/scd.2016.0127 pmid: 27762728
[41]   Gai Y S, Ren Y H, Gao Y, et al. Astaxanthin protecting myocardial cells from hypoxia/reoxygenation injury by regulating miR-138/HIF-1α axis. European Review for Medical and Pharmacological Sciences, 2020, 24(14): 7722-7731.
doi: 22276 pmid: 32744699
[42]   Sun S, Wang C, Weng J X. microRNA-138-5p drives the progression of heart failure via inhibiting sirtuin 1 signaling. Molecular Medicine Reports, 2021, 23(4): 276.
doi: 10.3892/mmr.2021.11915
[43]   de Araújo Melo L, da Silveira M M B M, de Vasconcellos Piscoya I C, et al. Expression of microRNAs (133b and 138) and correlation with echocardiographic parameters in patients with alcoholic cardiomyopathy. microRNA (Shariqah, United Arab Emirates), 2020, 9(2): 112-120.
[44]   李红. 氨磺必利联合帕罗西汀对重度抑郁症患者突触相关miRNAs表达影响. 国际精神病学杂志, 2020, 47(4): 705-708.
[44]   Li H. Effects of amisulpride combined with paroxetine on the expression of synapse-related miRNAs in patients with major depression. Journal of International Psychiatry, 2020, 47(4): 705-708.
[45]   Feng X J, Hu J L, Zhan F F, et al. microRNA-138-5p regulates hippocampal neuroinflammation and cognitive impairment by NLRP3/caspase-1 signaling pathway in rats. Journal of Inflammation Research, 2021, 14: 1125-1143.
doi: 10.2147/JIR.S304461
[46]   Wang M D, Sun H M, Yao Y N, et al. microRNA-217/138-5p downregulation inhibits inflammatory response, oxidative stress and the induction of neuronal apoptosis in MPP+-induced SH-SY5Y cells. American Journal of Translational Research, 2019, 11(10): 6619-6631.
[47]   Xie S, Niu W, Xu F, et al. Differential expression and significance of miRNAs in plasma extracellular vesicles of patients with Parkinson’s disease. The International Journal of Neuroscience, 2020, 26:1-16. DOI: 10.1080/00207454.2020.1835899.
doi: 10.1080/00207454.2020.1835899
[48]   Li J S, Yao Z X. microRNAs: novel regulators of oligodendrocyte differentiation and potential therapeutic targets in demyelination-related diseases. Molecular Neurobiology, 2012, 45(1): 200-212.
doi: 10.1007/s12035-011-8231-z
[49]   Zheng H J, Ramnaraign D, Anderson B A, et al. microRNA-138 inhibits osteogenic differentiation and mineralization of human dedifferentiated chondrocytes by regulating RhoC and the actin cytoskeleton. JBMR Plus, 2018, 3(2): e10071.
doi: 10.1002/jbm4.10071
[50]   Zhang L, Liu Y, Feng B, et al. miR-138-5p knockdown promotes osteogenic differentiation through FOXC 1 up-regulation in human bone mesenchymal stem cells. Biochemistry and Cell Biology, 2021, 99(3): 296-303.
doi: 10.1139/bcb-2020-0163
[51]   余洋. LncRNA KCNQ1OT1通过miR-138调控肌腱干细胞成脂及成骨分化的机制研究. 济南: 山东大学, 2021.
[51]   Yu Y. The mechanism study of long non-coding RNA KCNQ1OT1 regulating adipogenesis and osteogenic differentiation of tendon stem cells via miR-138. Jinan: Shandong University, 2021.
[52]   Zhou X, Luan X, Chen Z, et al. microRNA-138 inhibits periodontal progenitor differentiation under inflammatory conditions. Journal of Dental Research, 2016, 95(2): 230-237.
doi: 10.1177/0022034515613043 pmid: 26518300
[53]   Xu S Y, Shi P, Zhou R M. Post-menopausal oestrogen deficiency induces osteoblast apoptosis via regulating HOTAIR/miRNA-138 signalling and suppressing TIMP1 expression. Journal of Cellular and Molecular Medicine, 2021, 25(10): 4572-4582.
doi: 10.1111/jcmm.16216
[54]   Du J J, Zhang P W, Gan M L, et al. microRNA-204-5p regulates 3T3-L1 preadipocyte proliferation, apoptosis and differentiation. Gene, 2018, 668: 1-7.
doi: 10.1016/j.gene.2018.05.036
[55]   Esau C, Kang X L, Peralta E, et al. microRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 2004, 279(50): 52361-52365.
doi: 10.1074/jbc.C400438200
[56]   Yang Z, Bian C J, Zhou H, et al. microRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells and Development, 2011, 20(2): 259-267.
doi: 10.1089/scd.2010.0072
[57]   Wu C W, Biggar K K, Storey K B. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels. Genomics, Proteomics & Bioinformatics, 2014, 12(6): 284-291.
[58]   闫佳慧, 韩亮, 陈广. 棕色脂肪细胞因子的研究进展. 中国病理生理杂志, 2020, 36(6): 1140-1145, 1152.
[58]   Yan J H, Han L, Chen G. Advance in study of batokines. Chinese Journal of Pathophysiology, 2020, 36(6): 1140-1145, 1152.
[59]   Olivo-Marston S E, Hursting S D, Perkins S N, et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One, 2014, 9(4): e94765.
doi: 10.1371/journal.pone.0094765
[60]   Wu L P, Dai X J, Zhan J F, et al. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS, 2015, 123(7): 580-585.
doi: 10.1111/apm.12389
[61]   Pescador N, Pérez-Barba M, Ibarra J M, et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One, 2013, 8(10): e77251.
doi: 10.1371/journal.pone.0077251
[62]   Wang Y T, Lin L X, Huang Y, et al. microRNA-138 suppresses adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells by targeting lipoprotein lipase. Yonsei Medical Journal, 2019, 60(12): 1187-1194.
doi: 10.3349/ymj.2019.60.12.1187
[63]   Guo S Q, Ma B J, Jiang X K, et al. Astragalus polysaccharides inhibits tumorigenesis and lipid metabolism through miR-138-5p/SIRT1/SREBP1 pathway in prostate cancer. Frontiers in Pharmacology, 2020, 11: 598.
doi: 10.3389/fphar.2020.00598
[64]   Dang Y Q, Xu J J, Zhu M Z, et al. Gan-Jiang-Ling-Zhu Decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. Biomedicine & Pharmacotherapy, 2020, 127: 110127.
doi: 10.1016/j.biopha.2020.110127
[65]   Xiong L, Yang M L, Zheng K, et al. Comparison of adult testis and ovary microRNA expression profiles in Reeves’ pond turtles (Mauremys reevesii) with temperature-dependent sex determination. Frontiers in Genetics, 2020, 11: 133.
doi: 10.3389/fgene.2020.00133 pmid: 32194623
[66]   Chen L M, Huang R, Zhu D H, et al. Deep sequencing of small RNAs from 11 tissues of grass carp Ctenopharyngodon idella and discovery of sex-related microRNAs. Journal of Fish Biology, 2019, 94(1): 132-141.
doi: 10.1111/jfb.13875
[67]   Ocłoń E, Hrabia A. miRNA expression profile in chicken ovarian follicles throughout development and miRNA-mediated MMP expression. Theriogenology, 2021, 160: 116-127.
doi: 10.1016/j.theriogenology.2020.11.004 pmid: 33217625
[68]   陆博, 马立威, 王欣玲, 等. 年龄相关性白内障患者miR-138的表达及其对人晶状体上皮细胞凋亡的影响. 眼科新进展, 2018, 38(2): 111-115.
[68]   Lu B, Ma L W, Wang X L, et al. Expression of mi R-138 and its effects on human lens epithelial cells apoptosis in age-related cataract patients. Recent Advances in Ophthalmology, 2018, 38(2): 111-115.
[69]   Anand D, Al Saai S, Shrestha S K, et al. Genome-wide analysis of differentially expressed miRNAs and their associated regulatory networks in lenses deficient for the congenital cataract-linked Tudor domain containing protein TDRD7. Frontiers in Cell and Developmental Biology, 2021, 9: 615761.
doi: 10.3389/fcell.2021.615761
[70]   Chen J C, Qin R J. microRNA-138-5p regulates the development of spinal cord injury by targeting SIRT1. Molecular Medicine Reports, 2020, 22(1):328-336.
[71]   Wang H, Zhong J C, Zhang C F, et al. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak. BMC Genomics, 2020, 21(1): 347.
doi: 10.1186/s12864-020-6757-z pmid: 32381004
[72]   Kang Z H, Zhang S H, Jiang E H, et al. miR-193b regulates the differentiation, proliferation, and apoptosis of bovine adipose cells by targeting the ACSS2/AKT axis. Animals, 2020, 10(8): 1265.
doi: 10.3390/ani10081265
[73]   张阳阳. miR-378在牛前体脂肪细胞分化的作用与机制. 长春: 吉林大学, 2014.
[73]   Zhang Y Y. Effect and mechanism of bovine miR-378in preadipocyte differentiation. Changchun: Jilin University, 2014.
[74]   蔡春涛. Sox4通过Wnt信号通路影响成脂定向的研究. 厦门: 厦门大学, 2018.
[74]   Cai C T. Sox4 affects the adipogenesis by Wnt signaling pathway. Xiamen: Xiamen University, 2018.
[75]   Zhang D G, Zhao T, Hogstrand C, et al. Oxidized fish oils increased lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the CREB1-Bcl2-Beclin 1 pathway in the liver tissues and hepatocytes of yellow catfish. Food Chemistry, 2021, 360: 129814.
doi: 10.1016/j.foodchem.2021.129814
[76]   王冠男. 转录因子NFIB在脂肪细胞和成骨细胞分化中的作用及其机制研究. 天津: 天津医科大学, 2019.
[76]   Wang G N. Transcription factor NFIB regulates the differentiation of adipocytes and osteoblasts through Wnt/β-catenin signalling. Tianjin: Tianjin Medical University, 2019.
[77]   武晓慧, 孙成, 徐玉乔, 等. 组蛋白H3甲基转移酶Ezh2与小鼠脂肪细胞分化关系研究. 现代生物医学进展, 2019, 19(12): 2237-2242.
[77]   Wu X H, Sun C, Xu Y Q, et al. Study on the relationship between histone H 3 methyltransferase Ezh2 and adipocyte differentiation in mice. Progress in Modern Biomedicine, 2019, 19(12): 2237-2242.
[78]   Toyoshima Y, Yoshizawa F, Tokita R, et al. A translation repressor, 4E-BP1, regulates the triglyceride level in rat liver during protein deprivation. American Journal of Physiology Endocrinology and Metabolism, 2020, 318(5): E636-E645.
doi: 10.1152/ajpendo.00464.2019
[79]   王晓纬, 张志远, 王晓经. miR-20b在肥胖小鼠脂肪组织中的表达及对前脂肪细胞增殖和分化的影响. 重庆医学, 2020, 49(17): 2870-2876.
[79]   Wang X W, Zhang Z Y, Wang X J. Expression of miR-20b in adipose tissue of obese mice and its effect on proliferation and differentiation of preadipocytes. Chongqing Medicine, 2020, 49(17): 2870-2876.
[80]   Huang L O, Rauch A, Mazzaferro E, et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nature Metabolism, 2021, 3 (2): 228-243.
doi: 10.1038/s42255-021-00346-2 pmid: 33619380
[81]   米日阿依·阿里木江. Survivin在脂肪组织重构和代谢稳态中的作用研究. 上海:上海交通大学, 2020. Miriayi A L M J. The role of surviving in adipose tissue remodeling and metabolic homeostasis. Shanghai:Shanghai Jiao Tong University, 2020.
[82]   Ma X F, Sun J W, Zhu S P, et al. MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens. Animals: an Open Access Journal from MDPI, 2020, 10(3): 468.
[83]   李汝红, 王雅楠, 李树德, 等. 同型半胱氨酸调控脂肪组织PDK1的表达与糖代谢的关系. 南方医科大学学报, 2013, 33(4): 533-537.
[83]   Li R H, Wang Y N, Li S D, et al. Relationship between adipose expression of 3-phosphoinositide-dependent protein kinase 1 and glycometabolism in a mouse model of hyperhomocysteinemia. Journal of Southern Medical University, 2013, 33(4): 533-537.
[84]   姜平. 牛ACADSBCD44基因对脂肪代谢的调控作用. 长春: 吉林大学, 2019.
[84]   Jiang P. Regulation of ACADSB and CD44 gene on fat metabolism in cattle. Changchun: Jilin University, 2019.
[85]   李雨涵. 外源性miR-199a-5p通过干预脂肪酸代谢促进肝脏脂质生成的机制研究. 银川: 宁夏医科大学, 2019.
[85]   Li Y H. Exosomal miR-199a-5p promotes liver lipogenesis by disturbing fatty acid metabolism. Yinchuan: Ningxia Medical University, 2019.
[86]   Barra N G, Henriksbo B D, Anhê F F, et al. The NLRP3 inflammasome regulates adipose tissue metabolism. The Biochemical Journal, 2020, 477(6): 1089-1107.
doi: 10.1042/BCJ20190472
[87]   Yang D, Li M J, Du N. circ_101238/miR-138-5p/CDK Effects of the circ_101238/miR-138-5p/CDK6 axis on proliferation and apoptosis keloid fibroblasts. Experimental and Therapeutic Medicine, 2020, 20(3): 1995-2002.
[88]   Luo D Q, Liu F, Zhang J G, et al. Comprehensive analysis of LncRNA-mRNA expression profiles and the ceRNA network associated with pyroptosis in LPS-induced acute lung injury. Journal of Inflammation Research, 2021, 14: 413-428.
doi: 10.2147/JIR.S297081
[89]   Hu Y H, Sun J, Zhang J, et al. Long non-coding RNA ROR sponges miR-138 to aggravate hypoxia/reoxygenation-induced cardiomyocyte apoptosis via upregulating Mst1. Experimental and Molecular Pathology, 2020, 114: 104430.
doi: 10.1016/j.yexmp.2020.104430
[90]   Xu G S, Li M L, Wu J, et al. Circular RNA circNRIP1 sponges microRNA-138-5p to maintain hypoxia-induced resistance to 5-fluorouracil through HIF-1α-dependent glucose metabolism in gastric carcinoma. Cancer Management and Research, 2020, 12: 2789-2802.
doi: 10.2147/CMAR.S246272
[91]   赵丽玲, 王会, 柴志欣, 等. 牦牛lncFAM200B的克隆鉴定、表达及生物信息学分析. 华北农学报, 2020, 35(5): 220-230.
[91]   Zhao L L, Wang H, Chai Z X, et al. Cloning, expression and bioinformatics analysis of yak lncFAM200B. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 220-230.
[92]   Obernosterer G, Leuschner P J F, Alenius M, et al. Post-transcriptional regulation of microRNA expression. RNA (New York), 2006, 12(7): 1161-1167.
[93]   Wang C M, Li Q Z. Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. Journal of Genetics and Genomics, 2007, 34(11): 966-973.
doi: 10.1016/S1673-8527(07)60109-X
[94]   Morton S U, Scherz P J, Cordes K R, et al. microRNA-138 modulates cardiac patterning during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17830-17835.
[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[3] ZHU Jia-hao,CHEN Ting,XI Qian-yun. Research Progress on miR-146a Involved in Different Diseases[J]. China Biotechnology, 2021, 41(9): 64-70.
[4] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[5] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[6] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[7] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[8] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[9] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[10] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[11] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[12] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[13] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[14] ZHANG Ying,KONG Xiang-xi,HOU Lin,WANG Shu-kun,YUAN Zeng-qiang. Role and Mechanism of Ozanimod (RPC1063) in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2020, 40(6): 10-19.
[15] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.