Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 49-57    DOI: 10.13523/j.cb.2109041
    
Research Progress on the Effect of Gut Microbes on Life Span and Its Mechanism
LI Xue,MENG Qing-xiong**()
School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Download: HTML   PDF(1939KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Extending the span of a healthy lifespan is of great significance to everyone. Centenarians have unique characteristics of the intestinal microbiome. The gut microbiome lies at the core of many age-associated changes, and the changes in microbial characteristics and genetic composition can affect longevity. Some diets and drugs cannot play a life-extension effect without the participation of microorganisms, which play an important mediating and transforming role. Probiotics and fecal transplantation and other measures have been confirmed to affect the body’s lifespan in animal models. More and more studies have shown that microorganisms could produce small molecular compounds to promote healthy aging and even prolong individual life spans, such as γ -aminobutyric acid and capsular iso-polysaccharide acid. They also affect host biosynthesis metabolism, such as 5-hydroxytryptamine, and even indirectly participate in the regulation of host signal pathways. At present, there is no systematic summary of the biological functions of these microorganisms and their effects on the host lifespan. The article reviews the evidence and physiological mechanism of intestinal microorganisms’ effects on lifespan, providing a reference for interventions to improve health status in the elderly.



Key wordsGut microbes      Longevity      Microbial metabolites     
Received: 20 September 2021      Published: 05 May 2022
ZTFLH:  Q939.93  
Corresponding Authors: Qing-xiong MENG     E-mail: qxmeng@sina.com
Cite this article:

LI Xue,MENG Qing-xiong. Research Progress on the Effect of Gut Microbes on Life Span and Its Mechanism. China Biotechnology, 2022, 42(4): 49-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2109041     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/49

Fig.1 Host biosynthesis and metabolism are affected by gut microbes
Fig.2 Gut microbes indirectly participate in the regulation of host signaling pathways in C.elegans
[1]   Farrelly C. Positive biology’ as a new paradigm for the medical sciences. Focusing on people who live long, happy, healthy lives might hold the key to improving human well-being. EMBO Reports, 2012, 13(3): 186-188.
doi: 10.1038/embor.2011.256 pmid: 22281805
[2]   Andersen S L, Sebastiani P, Dworkis D A, et al. Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. The Journals of Gerontology: Series A, 2012, 67A(4): 395-405.
doi: 10.1093/gerona/glr223
[3]   Pyrkov T V, Avchaciov K, Tarkhov A E, et al. Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit. Nature Communications, 2021, 12: 2765.
doi: 10.1038/s41467-021-23014-1
[4]   Ruby J G, Wright K M, Rand K A, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics, 2018, 210(3): 1109-1124.
doi: 10.1534/genetics.118.301613
[5]   Verhaar B J H, Prodan A, Nieuwdorp M, et al. Gut microbiota in hypertension and atherosclerosis: a review. Nutrients, 2020, 12(10): 2982.
doi: 10.3390/nu12102982
[6]   Singer-Englar T, Barlow G, Mathur R. Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology & Hepatology, 2019, 13(1): 3-15.
[7]   Ragonnaud E, Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immunity & Ageing: I & A, 2021, 18(1): 2.
[8]   Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One, 2010, 5(5): e10667.
doi: 10.1371/journal.pone.0010667
[9]   Leite G, Pimentel M, Barlow G M, et al. Age and the aging process significantly alter the small bowel microbiome. Cell Reports, 2021, 36(13): 109765.
doi: 10.1016/j.celrep.2021.109765
[10]   麦热姆妮萨·艾麦尔. 长寿老人肠道益生菌(probiotics)的分离鉴定及长寿机理的研究. 乌鲁木齐: 新疆大学, 2012.
[10]   Maramnisa A. Isolation and identiifcation of long-lived elderly intestinal probiotics and research of longevity mechanism. Urumqi: Xinjiang University, 2012.
[11]   王芳. 广西巴马长寿老人肠道菌群及其与膳食纤维多糖饮食关联性研究. 南宁: 广西大学, 2015.
[11]   Wang F. Chinese centenarians gut microbiota and its correlation with high-fiber diet. Nanning: Guangxi University, 2015.
[12]   Wang F, Huang G H, Cai D, et al. Qualitative and semiquantitative analysis of fecal Bifidobacterium species in centenarians living in Bama, Guangxi, China. Current Microbiology, 2015, 71(1): 143-149.
doi: 10.1007/s00284-015-0804-z
[13]   Sato Y, Atarashi K, Plichta D R, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599 (7885): 458-464.
doi: 10.1038/s41586-021-03832-5
[14]   Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity. Current Biology, 2016, 26(11): 1480-1485.
doi: 10.1016/j.cub.2016.04.016
[15]   Santoro A, Ostan R, Candela M, et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cellular and Molecular Life Sciences: CMLS, 2018, 75(1): 129-148.
doi: 10.1007/s00018-017-2674-y
[16]   Cheng D, Xie M Z. A review of a potential and promising probiotic candidate-Akkermansia muciniphila. Journal of Applied Microbiology, 2021, 130(6): 1813-1822.
doi: 10.1111/jam.14911 pmid: 33113228
[17]   Waters J L, Ley R E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 2019, 17(1): 83.
doi: 10.1186/s12915-019-0699-4
[18]   Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine, 2019, 25 (8): 1234-1242.
doi: 10.1038/s41591-019-0504-5 pmid: 31332389
[19]   于涛, 德力夏提·依米提, 买买提·牙森, 等. 新疆维吾尔族长寿老人肠道菌群多样性分析. 中国病原生物学杂志, 2009, 4(4): 271-274.
[19]   Yu T, Delishati I, Maimaiti Y, et al. Analysis of intestinal flora diversity among longevity aged people of the Uygur nationality. Journal of Pathogen Biology, 2009, 4(4): 271-274.
[20]   Smith P, Willemsen D, Popkes M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife, 2017, 6: e27014.
doi: 10.7554/eLife.27014
[21]   Zhao Y, Zhao L, Zheng X N, et al. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. Journal of Microbiology (Seoul, Korea), 2013, 51(2): 183-188.
[22]   Westfall S, Lomis N, Prakash S. Longevity extension in Drosophila through gut-brain communication. Scientific Reports, 2018, 8: 8362.
doi: 10.1038/s41598-018-25382-z pmid: 29849035
[23]   Bodogai M, O’Connell J, Kim K, et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10(467): eaat4271.
doi: 10.1126/scitranslmed.aat4271
[24]   Boehme M, Guzzetta K E, Bastiaanssen T F S, et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nature Aging, 2021, 1 (8): 666-676.
doi: 10.1038/s43587-021-00093-9
[25]   Lynn M A, Eden G, Ryan F J, et al. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Reports, 2021, 36(8): 109564.
doi: 10.1016/j.celrep.2021.109564
[26]   Langille M G, Meehan C J, Koenig J E, et al. Microbial shifts in the aging mouse gut. Microbiome, 2014, 2(1): 50.
doi: 10.1186/s40168-014-0050-9 pmid: 25520805
[27]   Guo L L, Karpac J, Tran S L, et al. PGRP-SC 2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 2014, 156(1-2): 109-122.
doi: 10.1016/j.cell.2013.12.018
[28]   Rampelli S, Candela M, Turroni S, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging, 2013, 5(12): 902-912.
doi: 10.18632/aging.100623
[29]   Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe, 2017, 21(4): 455-466.e4.
[30]   Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 2007, 128(1): 92-105.
doi: 10.1016/j.mad.2006.11.016 pmid: 17116321
[31]   Han B, Sivaramakrishnan P, Lin C C J, et al. Microbial genetic composition tunes host longevity. Cell, 2017, 169(7): 1249-1262.e13.
doi: 10.1016/j.cell.2017.05.036
[32]   Liu H, Wang X, Wang H D, et al. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nature Communications, 2012, 3: 1073.
doi: 10.1038/ncomms2071
[33]   Dorling J L, Martin C K, Redman L M. Calorie restriction for enhanced longevity: the role of novel dietary strategies in the present obesogenic environment. Ageing Research Reviews, 2020, 64: 101038.
doi: 10.1016/j.arr.2020.101038
[34]   Asnicar F, Berry S E, Valdes A M, et al. Microbiome connections with host metabolism and habitual diet from 1, 098 deeply phenotyped individuals. Nature Medicine, 2021, 27 (2): 321-332.
doi: 10.1038/s41591-020-01183-8
[35]   Rera M, Clark R I, Walker D W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21528-21533.
[36]   Catterson J H, Khericha M, Dyson M C, et al. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Current Biology, 2018, 28(11): 1714-1724.e4.
doi: S0960-9822(18)30443-3 pmid: 29779873
[37]   Mattison J A, Colman R J, Beasley T M, et al. Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017, 8: 14063.
doi: 10.1038/ncomms14063 pmid: 28094793
[38]   Roberts M N, Wallace M A, Tomilov A A, et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metabolism, 2017, 26(3): 539-546.e5.
doi: S1550-4131(17)30490-4 pmid: 28877457
[39]   Fabbiano S, Suárez-Zamorano N, Chevalier C, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metabolism, 2018, 28(6): 907-921.e7.
doi: 10.1016/j.cmet.2018.08.005
[40]   Redman L M, Smith S R, Burton J H, et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metabolism, 2018, 27(4): 805-815.e4.
doi: 10.1016/j.cmet.2018.02.019
[41]   Martin A, Ecklu-Mensah G, Ha C W Y, et al. Gut microbiota mediate the FGF 21 adaptive stress response to chronic dietary protein-restriction in mice. Nature Communications, 2021, 12: 3838.
doi: 10.1038/s41467-021-24074-z
[42]   Dowling R J O, Goodwin P J, Stambolic V. Understanding the benefit of metformin use in cancer treatment. BMC Medicine, 2011, 9: 33.
doi: 10.1186/1741-7015-9-33 pmid: 21470407
[43]   Cabreiro F, Au C, Leung K Y, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 2013, 153(1): 228-239.
doi: 10.1016/j.cell.2013.02.035 pmid: 23540700
[44]   Pryor R, Norvaisas P, Marinos G, et al. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell, 2019, 178(6): 1299-1312.e29.
doi: 10.1016/j.cell.2019.08.003
[45]   Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555 (7698): 623-628.
doi: 10.1038/nature25979
[46]   Imhann F, Bonder M J, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65(5): 740-748.
doi: 10.1136/gutjnl-2015-310376
[47]   Jackson M A, Goodrich J K, Maxan M E, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut, 2016, 65(5): 749-756.
doi: 10.1136/gutjnl-2015-310861
[48]   Klünemann M, Andrejev S, Blasche S, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature, 2021, 597 (7877): 533-538.
doi: 10.1038/s41586-021-03891-8
[49]   Obata F, Fons C O, Gould A P. Early-life exposure to low-dose oxidants can increase longevity via microbiome remodelling in Drosophila. Nature Communications, 2018, 9: 975.
doi: 10.1038/s41467-018-03070-w
[50]   Kootte R S, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism, 2017, 26(4): 611-619.e6.
doi: S1550-4131(17)30559-4 pmid: 28978426
[51]   Strandwitz P, Kim K H, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nature Microbiology, 2019, 4 (3): 396-403.
doi: 10.1038/s41564-018-0307-3 pmid: 30531975
[52]   Bellono N W, Bayrer J R, Leitch D B, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell, 2017, 170(1): 185-198.e16.
doi: 10.1016/j.cell.2017.05.034
[53]   Yano J M, Yu K, Donaldson G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161(2): 264-276.
doi: 10.1016/j.cell.2015.02.047
[54]   Wohlgemuth S, Keller S, Kertscher R, et al. Intestinal steroid profiles and microbiota composition in colitic mice. Gut Microbes, 2011, 2(3): 159-166.
doi: 10.4161/gmic.2.3.16104 pmid: 21869607
[55]   Campbell C, McKenney P T, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581 (7809): 475-479.
doi: 10.1038/s41586-020-2193-0
[56]   Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging, 2011, 3(8): 716-732.
doi: 10.18632/aging.100361
[57]   Matsumoto M, Kurihara S, Kibe R, et al. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One, 2011, 6(8): e23652.
doi: 10.1371/journal.pone.0023652
[58]   Muller P A, Schneeberger M, Matheis F, et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature, 2020, 583 (7816): 441-446.
doi: 10.1038/s41586-020-2474-7
[59]   Bergman E N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 1990, 70(2): 567-590.
pmid: 2181501
[60]   Layden B T, Angueira A R, Brodsky M, et al. Short chain fatty acids and their receptors: new metabolic targets. Translational Research, 2013, 161(3): 131-140.
doi: 10.1016/j.trsl.2012.10.007 pmid: 23146568
[61]   Sonowal R, Swimm A, Sahoo A, et al. Indoles from commensal bacteria extend healthspan. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(36): E7506-E7515.
[62]   Bommarius B, Anyanful A, Izrayelit Y, et al. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli. PLoS One, 2013, 8(1): e54456.
doi: 10.1371/journal.pone.0054456
[63]   Hill J H, Round J L. SnapShot: Microbiota effects on host physiology. Cell, 2021, 184(10): 2796-2796.e1.
doi: 10.1016/j.cell.2021.04.026
[64]   Donato V, Ayala F R, Cogliati S, et al. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nature Communications, 2017, 8: 14332.
doi: 10.1038/ncomms14332
[65]   Hartsough L A, Park M, Kotlajich M V, et al. Optogenetic control of gut bacterial metabolism to promote longevity. eLife, 2020, 9: e56849.
doi: 10.7554/eLife.56849
[66]   Ekmekcioglu C. Nutrition and longevity - from mechanisms to uncertainties. Critical Reviews in Food Science and Nutrition, 2020, 60(18): 3063-3082.
doi: 10.1080/10408398.2019.1676698
[67]   Sun X J, Chen W D, Wang Y D. DAF-16/FOXO transcription factor in aging and longevity. Frontiers in Pharmacology, 2017, 8: 548.
doi: 10.3389/fphar.2017.00548
[68]   Amrit F R G, Boehnisch C M L, May R C. Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis Nematodes. PLoS One, 2010, 5(4): e9978.
doi: 10.1371/journal.pone.0009978
[69]   Wautier J L, Guillausseau P J. Advanced glycation end products, their receptors and diabetic angiopathy. Diabetes & Metabolism, 2001, 27(5 Pt 1): 535-542.
[70]   Münch G, Westcott B, Menini T, et al. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids, 2012, 42(4): 1221-1236.
doi: 10.1007/s00726-010-0777-y
[71]   Shin M G, Lee J W, Han J S, et al. Bacteria-derived metabolite, methylglyoxal, modulates the longevity of C. elegans through TORC2/SGK-1/DAF-16 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17142-17150.
[72]   van Gestel J, Vlamakis H, Kolter R. Division of labor in biofilms: the ecology of cell differentiation. Microbiology Spectrum, 2015, 3(2): MB-0002-2014.
[73]   di Luccia B, D’Apuzzo E, Varriale F, et al. Bacillus megaterium SF 185 induces stress pathways and affects the cell cycle distribution of human intestinal epithelial cells. Beneficial Microbes, 2016, 7(4): 609-620.
doi: 10.3920/BM2016.0020 pmid: 27291405
[74]   Nakagawa H, Shiozaki T, Kobatake E, et al. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell, 2016, 15(2): 227-236.
doi: 10.1111/acel.12431 pmid: 26710940
[75]   Deng J H, Dai Y X, Tang H Q, et al. SKN-1 is a negative regulator of DAF-16 and somatic stress resistance in Caenorhabditis elegans. G3 (Bethesda, Md), 2020, 10(5): 1707-1712.
[76]   Tullet J M A, Green J W, Au C, et al. The SKN-1/Nrf 2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell, 2017, 16(5): 1191-1194.
doi: 10.1111/acel.12627
[77]   Zhang Q, Pan Y, Zeng B, et al. Intestinal lysozyme liberates Nod 1 ligands from microbes to direct insulin trafficking in pancreatic beta cells. Cell Research, 2019, 29 (7): 516-532.
doi: 10.1038/s41422-019-0190-3 pmid: 31201384
[78]   Lee C H, Steiner T, Petrof E O, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA, 2016, 315(2): 142-149.
doi: 10.1001/jama.2015.18098
[79]   Marotz C A, Zarrinpar A. Treating obesity and metabolic syndrome with fecal microbiota transplantation. The Yale Journal of Biology and Medicine, 2016, 89(3): 383-388.
[80]   Clemente J C, Ursell L K, Parfrey L W, et al. The impact of the gut microbiota on human health: an integrative view. Cell, 2012, 148(6): 1258-1270.
doi: 10.1016/j.cell.2012.01.035 pmid: 22424233
[81]   Pelzer E, Gomez-Arango L F, Barrett H L, et al. Review: maternal health and the placental microbiome. Placenta, 2017, 54: 30-37.
doi: S0143-4004(16)30649-X pmid: 28034467
No related articles found!