Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 82-90    DOI: 10.13523/j.cb.2108037
    
Mechanisms of Action of tRNA-derived Small RNAs and Their Potential Roles in Related Diseases
LIAO Tian-ci,ZHENG Ting,SHEN Lin-yuan,ZHAO Ye,NIU Li-li,ZHANG Shun-hua,ZHU Li**()
College of Animal Science and Technology, Sichuan Agricultural University, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
Download: HTML   PDF(1525KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recently, tRNA-derived small RNAs (tsRNAs) were gradually recognized as a novel and potential non-coding RNAs (ncRNAs).There are mainly two types of tsRNAs, including tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), which differ in the cleavage position of the precursor or mature tRNA transcript. Emerging evidence suggests that tsRNAs are implicated in various cellular processes, including translational inhibition, gene silencing, and ribosome biogenesis. They also play an important role in the development of related diseases such as cancer, neurodegeneration, metabolic diseases and viral infections. This review summarizes the functions and mechanisms of action of tsRNAs, the potential application of tsRNAs in related diseases,and the current problems and puts forward future research directions.



Key wordstsRNAs      ncRNAs      tRNA      RNA processing      Small RNA     
Received: 12 August 2021      Published: 07 April 2022
ZTFLH:  Q819  
Corresponding Authors: Li ZHU     E-mail: zhuli7508@163.com
Cite this article:

LIAO Tian-ci, ZHENG Ting, SHEN Lin-yuan, ZHAO Ye, NIU Li-li, ZHANG Shun-hua, ZHU Li. Mechanisms of Action of tRNA-derived Small RNAs and Their Potential Roles in Related Diseases. China Biotechnology, 2022, 42(3): 82-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108037     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/82

Fig.1 Illustration of the five categories of tsRNAs
tsRNAs 类型 机制 生物学作用 参考文献
5' tiRNAAla 5' tiRNA 直接作用于elF4G,阻止翻译起始复合物的形成 抑制蛋白质翻译起始 [12-13]
5' tRF(Gln19) tRF-5 不需要互作的靶点,只需要5'-tRFs中普遍保守的“GG”二核苷酸 蛋白质翻译抑制 [14]
5' tRF(Lys19) tRF-5 不需要互作的靶点,只需要5'-tRFs中普遍保守的“GG”二核苷酸 蛋白质翻译抑制 [14]
CU1276 tRF-3 5'端的种子序列靶向RPA1的3' UTR,抑制RPA1的表达 抑制B细胞淋巴瘤细胞增殖 [15]
5'-tiRNA-His-GTG 5' tiRNA AGO1/3介导下,5'端种子序列靶向LATS2的3' UTR,抑制LATS2的表达 抑制凋亡,促进CRC细胞增殖 [16]
3'-tRFProTGG-19 tRF-3 5'端种子序列靶向Kcnma1的3' UTR,抑制Kcnma1的表达 造成血压紊乱 [17]
5'-tRF-GluCTC tRF-5 通过自身3'端与目标基因5'端结合,抑制细胞质靶mRNA 促进RSV的复制 [18]
3'-tsRNALeuCAG tRF-3 与核糖体蛋白RPS28 mRNAs结合,并增强其翻译 调控核糖体的生物发生 [19-20]
5'-tRFGlu tRF-5 与PIWIL4和PIWIL1形成复合物,促进CD1A启动子H3K9甲基化,抑制CD1A的表达 抑制免疫反应 [21]
5' tRFVal(CAC) tRF-5 与PIWIL4蛋白结合 抑制免疫反应 [22]
5' tRFGly(GCC) tRF-5 与PIWIL4蛋白结合 抑制免疫反应 [22]
3'-tRNA-Ala(UGC) tRF-3 3'端的CCACCA序列可以直接与Toll样受体(TLR)相互作用 激活Th1和毒性T淋巴细胞的免疫反应 [23]
5'-tiRNA-HisGUG 5' tiRNA 激活核内体TLR7 促进免疫反应 [24]
3'-tRNAGly-GCC tRF-3 直接切割mRNA部分互补的靶位部位 调节mRNA的稳定性 [15]
3'-tRNALeu-CAG tRF-3 直接切割mRNA部分互补的靶位部位 调节mRNA的稳定性 [25]
tRNAGluYTC tRF-2 与mRNA竞争性地结合YBX1 降低mRNA稳定性并促进降解 [26]
tRNAAspGTC tRF-2 与mRNA竞争性地结合YBX1 降低mRNA稳定性并促进降解 [26]
tiRNAArg-ACG 3' tiRNA 与线粒体释放的细胞色素C(Cyt C)相互作用,形成核糖核蛋白复合物 抑制凋亡体的形成和活性,抑制凋亡 [27]
Table 1 tsRNAs involved in various biological functions
tsRNAs 类型 相关疾病 功能 参考文献
tRNAGluYTC
tRNAAspGTC
tRF-2 乳腺癌 与YBX1结合并破坏致癌转录本的稳定性来抑制乳腺癌 [26]
TDR-7816 tRF-2 乳腺癌 影响异种代谢过程促进乳腺癌发生 [38]
5' tiRNA-His-GTG 5' tiRNA 结直肠癌 靶向hippo信号通路,促进促增殖和抗凋亡相关基因的表达,加剧结直肠癌的发生 [16]
3'-tRF-ProTGG-19 tRF-3 高血压 抑制Kcnma1表达,加剧血压失调 [17]
tiRNA-Gly-GCC-002
TRF-Tyr-GTA-029
TRF-Thr-TGT-039
5' tiRNA
tRF-5
tRF-3
糖尿病性白内障 通过FoxO信号通路来调控DC发展 [39]
TRF-3001b tRF-3 非酒精性脂肪肝 靶向Prkaa1来抑制自噬,从而加重NAFLD的发展 [40]
3'-tRFlys3 tRF-3 HIV 和AGO2蛋白联合,通过RNAi机制靶向HIV [41]
5'-tRF-GluCTC tRF-5 RSV感染 靶向抑制ApoER2,从而促进RSV的复制 [18, 42]
3'-tRF-Tyr-GUA tRF-3 氧化应激 导致前体tRNA的显著耗尽,从而翻译抑制和生长抑制 [43]
tRF-20-MEJB5Y13 tRF-2 缺氧应激(CRC) 促使CRC细胞侵袭和迁移 [44]
tRF-315 tRF-3 顺铂重金属应激 保护前列腺癌细胞免受顺铂治疗诱导的线粒体依赖性细胞凋亡 [45]
Table 2 tsRNAs involved in various diseases
[1]   Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nature Reviews Genetics, 2015, 16(2):98-112.
doi: 10.1038/nrg3861
[2]   Phizicky E M, Hopper A K. tRNA biology charges to the front. Genes & Development, 2010, 24(17):1832-1860.
doi: 10.1101/gad.1956510
[3]   Schimmel P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nature Reviews Molecular Cell Biology, 2018, 19(1):45-58.
doi: 10.1038/nrm.2017.77 pmid: 28875994
[4]   Borek E, Baliga B S, Gehrke C W, et al. High turnover rate of transfer RNA in tumor tissue. Cancer Research, 1977, 37(9):3362-3366.
pmid: 884680
[5]   Li S Q, Xu Z P, Sheng J H. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes, 2018, 9(5):246.
doi: 10.3390/genes9050246
[6]   Elkordy A, Mishima E, Niizuma K, et al. Stress-induced tRNA cleavage and tiRNA generation in rat neuronal PC12 cells. Journal of Neurochemistry, 2018, 146(5):560-569.
doi: 10.1111/jnc.14321 pmid: 29431851
[7]   Shigematsu M, Kirino YM. tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regulation and Systems Biology, 2015, 9:27-33.
doi: 10.4137/GRSB.S29411 pmid: 26401098
[8]   Kuscu C, Kumar P, Kiran M, et al. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA, 2018, 24(8):1093-1105.
doi: 10.1261/rna.066126.118
[9]   Zhu X L, Li T, Cao Y, et al. tRNA-derived fragments tRF(GlnCTG) induced by arterial injury promote vascular smooth muscle cell proliferation. Molecular Therapy - Nucleic Acids, 2021, 23:603-613.
[10]   Kumar P, Kuscu C, Dutta A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends in Biochemical Sciences, 2016, 41(8):679-689.
doi: 10.1016/j.tibs.2016.05.004
[11]   Kumar P, Mudunuri S B, Anaya J, et al. tRFdb: a database for transfer RNA fragments. Nucleic Acids Research, 2015, 43(D1):D141-D145.
doi: 10.1093/nar/gku1138
[12]   Emara M M, Ivanov P, Hickman T, et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. Journal of Biological Chemistry, 2010, 285(14):10959-10968.
doi: 10.1074/jbc.M109.077560
[13]   Lyons S M, Kharel P, Akiyama Y, et al. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Research, 2020, 48(11):6223-6233.
doi: 10.1093/nar/gkaa336
[14]   Sobala A, Hutvagner G. Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells. RNA Biology, 2013, 10(4):553-563.
doi: 10.4161/rna.24285
[15]   Maute R L, Schneider C, Sumazin P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. PNAS, 2013, 110(4):1404-1409.
doi: 10.1073/pnas.1206761110 pmid: 23297232
[16]   Tao E W, Wang H L, Cheng W Y, et al. A specific tRNA half, 5'tiRNA-His-GTG, responds to hypoxia via the HIF1α/ANG axis and promotes colorectal cancer progression by regulating LATS2. Journal of Experimental & Clinical Cancer Research: CR, 2021, 40(1):67.
[17]   Pan X Q, Geng X M, Liu Y, et al. Transfer RNA fragments in the kidney in hypertension. Hypertension (Dallas, Tex : 1979), 2021, 77(5):1627-1637.
[18]   Wang Q R, Lee I, Ren J P, et al. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2013, 21(2):368-379.
doi: 10.1038/mt.2012.237
[19]   Kim H K, Fuchs G, Wang S C, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017, 552(7683):57-62.
doi: 10.1038/nature25005
[20]   Kim H K, Xu J P, Chu K, et al. A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell Reports, 2019, 29(12):3816-3824, e4.
doi: 10.1016/j.celrep.2019.11.062
[21]   Zhang X, He X, Liu C, et al. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. Journal of Immunology (Baltimore, Md : 1950), 2016, 196(4):1591-1603.
doi: 10.4049/jimmunol.1500805
[22]   Kazimierczyk M, Jędroszkowiak A, Kowalczykiewicz D, et al. tRNA-derived fragments from the Sus scrofa tissues provide evidence of their conserved role in mammalian development. Biochemical and Biophysical Research Communications, 2019, 520(3):514-519.
doi: S0006-291X(19)31951-5 pmid: 31610915
[23]   Wang Z J, Xiang L, Shao J J, et al. The 3' CCACCA sequence of tRNAAla(UGC) is the motif that is important in inducing Th1-like immune response, and this motif can be recognized by Toll-like receptor 3. Clinical and Vaccine Immunology: CVI, 2006, 13(7):733-739.
doi: 10.1128/CVI.00019-06
[24]   Pawar K, Shigematsu M, Sharbati S, et al. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biology, 2020, 18(12):e3000982.
doi: 10.1371/journal.pbio.3000982
[25]   Shao Y, Sun Q L, Liu X M, et al. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chemical Biology & Drug Design, 2017, 90(5):730-738.
[26]   Goodarzi H, Liu X H, Nguyen H C B, et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell, 2015, 161(4):790-802.
doi: 10.1016/j.cell.2015.02.053 pmid: 25957686
[27]   Saikia M, Jobava R, Parisien M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Molecular and Cellular Biology, 2014, 34(13):2450-2463.
doi: 10.1128/MCB.00136-14
[28]   Yamasaki S, Ivanov P, Hu G F, et al. Angiogenin cleaves tRNA and promotes stress-induced translational repression. The Journal of Cell Biology, 2009, 185(1):35-42.
doi: 10.1083/jcb.200811106
[29]   Donovan J, Rath S, Kolet-Mandrikov D, et al. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA (New York, NY), 2017, 23(11):1660-1671.
doi: 10.1261/rna.062000.117
[30]   Ivanov P, Emara M M, Villen J, et al. Angiogenin-induced tRNA fragments inhibit translation initiation. Molecular Cell, 2011, 43(4):613-623.
doi: 10.1016/j.molcel.2011.06.022 pmid: 21855800
[31]   Ivanov P, O’Day E, Emara M M, et al. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. PNAS, 2014, 111(51):18201-18206.
doi: 10.1073/pnas.1407361111 pmid: 25404306
[32]   Kumar P, Anaya J, Mudunuri S B, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biology, 2014, 12:78.
doi: 10.1186/s12915-014-0078-0
[33]   Haussecker D, Huang Y, Lau A, et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA (New York, NY), 2010, 16(4):673-695.
doi: 10.1261/rna.2000810
[34]   Couvillion M T, Bounova G, Purdom E, et al. A Tetrahymena piwi bound to mature tRNA 3' fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Molecular Cell, 2012, 48(4):509-520.
doi: 10.1016/j.molcel.2012.09.010 pmid: 23084833
[35]   Dhahbi J M, Spindler S R, Atamna H, et al. 5' tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics, 2013, 14:298.
doi: 10.1186/1471-2164-14-298
[36]   Zhang Y F, Zhang Y, Shi J C, et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. Journal of Molecular Cell Biology, 2014, 6(2):172-174.
doi: 10.1093/jmcb/mjt052
[37]   Chen Q, Yan M H, Cao Z H, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science (New York, NY), 2016, 351(6271):397-400.
doi: 10.1126/science.aad7977
[38]   Huang Y, Ge H, Zheng M J, et al. Serum tRNA-derived fragments (tRFs) as potential candidates for diagnosis of nontriple negative breast cancer. Journal of Cellular Physiology, 2020, 235(3):2809-2824.
doi: 10.1002/jcp.29185 pmid: 31535382
[39]   Han X Y, Cai L, Lu Y, et al. Identification of tRNA-derived fragments and their potential roles in diabetic cataract rats. Epigenomics, 2020, 12(16):1405-1418.
doi: 10.2217/epi-2020-0193
[40]   Zhu J J, Cheng M L, Zhao X K. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy. Life Sciences, 2020, 257:118125.
doi: 10.1016/j.lfs.2020.118125
[41]   Yeung M L, Bennasser Y, Watashi K, et al. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Research, 2009, 37(19):6575-6586.
doi: 10.1093/nar/gkp707 pmid: 19729508
[42]   Deng J F, Ptashkin R N, Chen Y, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Molecular Therapy : the Journal of the American Society of Gene Therapy, 2015, 23(10):1622-1629.
doi: 10.1038/mt.2015.124
[43]   Huh D, Passarelli M C, Gao J, et al. A stress-induced tyrosine-tRNA depletion response mediates codon-based translational repression and growth suppression. The EMBO Journal, 2021, 40(2):e106696.
[44]   Luan N, Mu Y L, Mu J Y, et al. Dicer1 promotes colon cancer cell invasion and migration through modulation of tRF-20-MEJB5Y13 expression under hypoxia. Frontiers in Genetics, 2021, 12:638244.
doi: 10.3389/fgene.2021.638244
[45]   Yang C, Lee M, Song G, et al. tRNA(Lys)-derived fragment alleviates cisplatin-induced apoptosis in prostate cancer cells. Pharmaceutics, 2021, 13(1):55.
doi: 10.3390/pharmaceutics13010055
[46]   Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxidants & Redox Signaling, 2007, 9(8):1221-1235.
[47]   Keith B, Simon M C. Hypoxia-inducible factors, stem cells, and cancer. Cell, 2007, 129(3):465-472.
doi: 10.1016/j.cell.2007.04.019
[48]   Cui Y Y, Huang Y, Wu X W, et al. Hypoxia-induced tRNA-derived fragments, novel regulatory factor for doxorubicin resistance in triple-negative breast cancer. Journal of Cellular Physiology, 2019, 234(6):8740-8751.
doi: 10.1002/jcp.v234.6
[49]   Skeparnias I, Anastasakis D, Grafanaki K, et al. Contribution of miRNAs, tRNAs and tRFs to aberrant signaling and translation deregulation in lung cancer. Cancers, 2020, 12(10):3056.
doi: 10.3390/cancers12103056
[50]   Skalsky R L, Cullen B R. Viruses, microRNAs, and host interactions. Annual Review of Microbiology, 2010, 64:123-141.
doi: 10.1146/micro.2010.64.issue-1
[51]   Taxis T M, Bauermann F V, Ridpath J F, et al. Analysis of tRNA halves (tsRNAs) in serum from cattle challenged with bovine viral diarrhea virus. Genetics and Molecular Biology, 2019, 42(2):374-379.
doi: 10.1590/1678-4685-gmb-2018-0019
[52]   Blanco S, Dietmann S, Flores J V, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. The EMBO Journal, 2014, 33(18):2020-2039.
doi: 10.15252/embj.201489282
[53]   Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes & Development, 2010, 24(15):1590-1595.
doi: 10.1101/gad.586710
[54]   Greenway M J, Andersen P M, Russ C, et al. ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nature Genetics, 2006, 38(4):411-413.
pmid: 16501576
[55]   van Es M A, Schelhaas H J, van Vught P W J, et al. Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Annals of Neurology, 2011, 70(6):964-973.
doi: 10.1002/ana.22611
[56]   Dou R, Zhang X L, Xu X D, et al. Mesenchymal stem cell exosomal tsRNA-21109 alleviate systemic lupus erythematosus by inhibiting macrophage M1 polarization. Molecular Immunology, 2021, 139:106-114.
doi: 10.1016/j.molimm.2021.08.015
[57]   Taxis T M, Kehrli M E, D’orey-Branco R, et al. Association of transfer RNA fragments in white blood cells with antibody response to bovine leukemia virus in Holstein cattle. Frontiers in Genetics, 2018, 9:236.
doi: 10.3389/fgene.2018.00236
[58]   Li S Q, Chen Y D, Sun D S, et al. Angiogenin prevents progranulin A9D mutation-induced neuronal-like cell apoptosis through cleaving tRNAs into tiRNAs. Molecular Neurobiology, 2018, 55(2):1338-1351.
doi: 10.1007/s12035-017-0396-7
[59]   Zhang Z Y, Zhang C H, Yang J J, et al. Genome-wide analysis of hippocampal transfer RNA-derived small RNAs identifies new potential therapeutic targets of Bushen Tiansui formula against Alzheimer’s disease. Journal of Integrative Medicine, 2021, 19(2):135-143.
doi: 10.1016/j.joim.2020.12.005
[60]   Honda S, Loher P, Shigematsu M, et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. PNAS, 2015, 112(29):E3816-E3825.
[1] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[2] ZHAO Xiu-li, ZHOU Dan-dan, YAN Xiao-guang, WU Hao, CAIYIN Qing-gele, LI Yan-ni, QIAO Jian-jun. Regulation and Application in Metabolic Engineering of Bacterial Small RNAs[J]. China Biotechnology, 2017, 37(6): 97-106.
[3] HAN Yan, HUANG Yuan, YE Hai-yan. tRNase Z’s Research Progress[J]. China Biotechnology, 2012, 32(04): 110-116.
[4] ZHOU Qi-Hua-1, ZHOU Cheng-Mei-2. Research Progress on Aminoacyl-tRNA Synthetases[J]. China Biotechnology, 2009, 29(06): 130-134.
[5] Wei Liu . Piwi-interacting RNA (piRNA): a Novel class of Noncoding Small RNA[J]. China Biotechnology, 2008, 28(8): 130-135.