Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (3): 124-131    DOI: 10.13523/j.cb.2108019
    
Research Progress of Alkaline Xylanase
TIAN Wen-zhuo1,WANG Guo-dong1,MA Jun1,WEI Xiao-feng1,WANG Rui-ming1,2,LI Pi-wu1,2,XIAO Jing1,2,WANG Jun-qing1,2,**()
1 School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
2 State Key Laboratory of Biobased Materials and Green Papermaking, Jinan 250353, China
Download: HTML   PDF(1508KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Xylan is an abundant renewable resource in nature, the content of which is second only to cellulose. Xylanase is a kind of enzyme that can hydrolyze xylan into monosaccharides and oligosaccharides. The products decomposed by xylanase can be widely used in food, papermaking, textile and other industries. Xylanase can be divided into alkaline xylanase, neutral xylanase and acidic xylanase according to its tolerance to acid-base environment. Alkaline xylanase is suitable for paper industry, especially in various processes such as pulping, bleaching and waste paper deinking, which can significantly improve paper quality, effectively reduce chlorine emission, and reduce environmental pollution. With the progress of biotechnology, the molecular modification of alkaline xylanase can be carried out by means of genetic engineering, so as to improve its alkali resistance and heat resistance and expand its condition range in industrial application. This paper introduces the research progress of alkaline xylanase in molecular modification, and briefly introduces its applications in pulping, bleaching and waste deinking.



Key wordsAlkaline xylanase      Molecular modification      Pulping and papermaking     
Received: 04 August 2021      Published: 07 April 2022
ZTFLH:  Q556  
Corresponding Authors: Jun-qing WANG     E-mail: wjqtt.6082@163.com
Cite this article:

TIAN Wen-zhuo,WANG Guo-dong,MA Jun,WEI Xiao-feng,WANG Rui-ming,LI Pi-wu,XIAO Jing,WANG Jun-qing. Research Progress of Alkaline Xylanase. China Biotechnology, 2022, 42(3): 124-131.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108019     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I3/124

Fig.1 Typical structure of xylanase (a) GH11 family xylanase (b) GH10 family xylanase
来源 表达菌株 表达载体 最适pH 最适温度 /℃ 参考文献
Thermobifida halotolerans sp.YIM 90462T E.coli BL21(DE3) pET28-a(+) 9.0 70 [20]
Bacillus pumilus BYG E.coli BL21(DE3) pET28-a(+) 9.0 50 [21]
Bacillus pumilus G1-3 E.coli BL21(DE3) pET22-b (+) 8.0 55 [12]
Streptomyces sp. WMN-3 E.coli BL21(DE3) pET28-a(+) 8.0 55 [22]
Rhodothermaceae sp. RA E.coli BL21(DE3) pET28-a(+) 8.0 60 [16]
Caulobacter crescentus E.coli BL21(DE3) pTrcHisA 8.0 60 [15]
Marinimicrobium sp. LS-A18 E.coli BL21(DE3) pET28-a(+) 7.5 40 [17]
Table 1 Expression and enzymatic properties of partial alkaline xylanase
改造方式 酶的来源 改造目的 改造结果 参考文献
定向进化筛选 Aspergillus oryzae 提高热稳定性 改造后最适温度为65℃,较改造前提高10℃ [26]
Bacillus sp. strain 41M-1 提高耐热性 改造后最适温度为65℃,较改造前提高4℃ [27]
Bacillus sp. 30Y5 提高催化性能 改造后比活力为1 016.8 U/mg,较改造前提高65% [28]
半理性设计 Cellulomonas uda 提高最适pH、最适温度 改造后最适温度为60℃,较改造前提高10℃
改造后最适pH为7.5,较改造前提高1.0
[29]
Aspergillus fumigatus Z5 提高热稳定性 改造后65℃时T1/2为9 h,较改造前提高34% [30]
Aspergillus niger NL-1 提高热稳定性、pH稳定性 改造后最适温度为50℃,较改造前提高10℃
改造后pH稳定性为194%,较改造前提高74%
[31]
理性设计 Bacillus circulans 提高催化性能 改造后比活力为1 030.7 U/mg,较改造前提高38% [32]
Bacillus halodurans S7 降低最适pH 改造后最适pH为6.0,较改造前降低3.0 [33]
Penicillium janthinellum MA21601 提高热稳定性 改造后最适温度为70℃,较改造前提高20℃ [34]
Table 2 Major progress in molecular modification of xylanase
[1]   姚银, 闵琪, 熊海容, 等. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析. 中国生物工程杂志, 2019, 39(3):37-45.
[1]   Yao Y, Min Q, Xiong H R, et al. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses. China Biotechnology, 2019, 39(3):37-45.
[2]   Sharma D, Chaudhary R, Kaur J, et al. Greener approach for pulp and paper industry by xylanase and laccase. Biocatalysis and Agricultural Biotechnology, 2020, 25:101604.
doi: 10.1016/j.bcab.2020.101604
[3]   李吉萍, 包昌杰, 陈光, 等. 木聚糖酶异源表达的研究进展. 中国生物工程杂志, 2019, 39(7):91-99.
[3]   Li J P, Bao C J, Chen G, et al. Research advances in heterologous expression of xylanase. China Biotechnology, 2019, 39(7):91-99.
[4]   Chang X Y, Xu B, Bai Y G, et al. Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris. PLoS One, 2017, 12(2):e0171111.
doi: 10.1371/journal.pone.0171111
[5]   Fujimoto Z, Kishine N, Teramoto K, et al. Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Applied Microbiology and Biotechnology, 2021, 105(5):1943-1952.
doi: 10.1007/s00253-021-11098-0 pmid: 33564921
[6]   Suzuki M, Takita T, Kuwata K, et al. Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp. strain TAR-1 by the mutation of S92 to E. Bioscience, Biotechnology, and Biochemistry, 2021, 85(2):386-390.
doi: 10.1093/bbb/zbaa003
[7]   Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 2019, 6:40.
doi: 10.1186/s40643-019-0276-2
[8]   Bai W Q, Zhou C, Zhao Y J, et al. Structural insight into and mutational analysis of family 11 xylanases: implications for mechanisms of higher pH catalytic adaptation. PLoS One, 2015, 10(7):e0132834.
doi: 10.1371/journal.pone.0132834
[9]   Satyanarayana L, Gaikwad S M, Balkrishnan H, et al. Crystal structure and fluorescence analysis of alkaline thermostable xylanase from Bacillus sp. (NCL 87-6-10). Protein & Peptide Letters, 2013, 20(2):125-132.
[10]   宋玉玲. GH10家族碱性木聚糖酶耐碱机制的研究. 长春: 东北师范大学, 2019.
[10]   Song Y L. Study on the alkali-resistant mechanism of GH10 family alkaline xylanase. Changchun: Northeast Normal University, 2019.
[11]   闵柔, 李剑芳, 高树娟, 等. 木聚糖酶EvXyn11TS耐热性与其N端二硫键的相关性分析. 微生物学报, 2013, 53(4):346-353.
[11]   Min R, Li J F, Gao S J, et al. Correlation between thermostability of the xylanase EvXyn11 TS and its N-terminal disulfide bridge. Acta Microbiologica Sinica, 2013, 53(4):346-353.
[12]   郑宏臣, 刘逸寒, 刘晓光, 等. 碱性木聚糖酶产生菌的筛选、XynG1-3基因克隆表达及酶学性质研究. 生物技术通报, 2012(10):106-113.
[12]   Zheng H C, Liu Y H, Liu X G, et al. Screening of alkaline xylanase producing strains and cloning, expression and characterization of xylanase gene XynG1-3. Biotechnology Bulletin, 2012(10):106-113.
[13]   Long L F, Zhang Y B, Ren H Y, et al. Recombinant expression of Aspergillus niger GH10 endo-xylanase in Pichia pastoris by constructing a double-plasmid co-expression system. Journal of Chemical Technology & Biotechnology, 2020, 95(3):535-543.
[14]   Mhiri S, Bouanane-Darenfed A, Jemli S, et al. A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: recombinant expression, characterization and application in paper biobleaching. International Journal of Biological Macromolecules, 2020, 164:808-817.
doi: 10.1016/j.ijbiomac.2020.07.162
[15]   Jacomini D, Bussler L, Corrêa J M, et al. Cloning, expression and characterization of C. crescentus xynA2 gene and application of xylanase II in the deconstruction of plant biomass. Molecular Biology Reports, 2020, 47(6):4427-4438.
doi: 10.1007/s11033-020-05507-2 pmid: 32424521
[16]   Liew K J, Ngooi C Y, Shamsir M S, et al. Heterologous expression, purification and biochemical characterization of a new endo-1, 4-β-xylanase from Rhodothermaceae bacterium RA. Protein Expression and Purification, 2019, 164:105464.
doi: 10.1016/j.pep.2019.105464
[17]   Yu H, Zhao S X, Fan Y Q, et al. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM_18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Applied Microbiology and Biotechnology, 2019, 103(21-22):8899-8909.
doi: 10.1007/s00253-019-10140-6
[18]   Li Z Y, Li X M, Liu T H, et al. The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. International Journal of Biological Macromolecules, 2019, 133:316-323.
doi: 10.1016/j.ijbiomac.2019.04.090
[19]   Khandeparker R, Parab P, Amberkar U. Recombinant xylanase from Bacillus tequilensis BT21: biochemical characterisation and its application in the production of xylobiose from agricultural residues. Food Technology and Biotechnology, 2017, 55(2):164-172.
doi: 10.17113/ftb.55.02.17.4896 pmid: 28867946
[20]   Zhang F, Chen J J, Ren W Z, et al. Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462 T. Journal of Industrial Microbiology & Biotechnology, 2012, 39(8):1109-1116.
[21]   Wang J, Zhang W W, Liu J N, et al. An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Molecular Biology Reports, 2010, 37(7):3297-3302.
doi: 10.1007/s11033-009-9915-6
[22]   周鹏. Streptomyces sp.WMN-3碱性内切木聚糖酶新基因的克隆和表达. 深圳: 深圳大学, 2018.
[22]   Zhou P. Cloning and expression of an endoxylanase gene from Streptomyces sp.WMN-3. Shenzhen: Shenzhen University, 2018.
[23]   张群. 基于结构生物信息学指导稳定性杂合木聚糖酶的设计初探. 济南: 山东大学, 2018.
[23]   Zhang Q. Design of stable hybrid xylanase based on structural bioinformatics methods. Jinan: Shandong University, 2018.
[24]   Xu J, Cen Y X, Singh W, et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters. Journal of the American Chemical Society, 2019, 141(19):7934-7945.
doi: 10.1021/jacs.9b02709
[25]   曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程: 从定向进化到计算设计. 生物工程学报, 2019, 35(10):1843-1856.
[25]   Qu G, Zhu T, Jiang Y Y, et al. Protein engineering: from directed evolution to computational design. Chinese Journal of Biotechnology, 2019, 35(10):1843-1856.
[26]   吴芹, 臧嘉, 胡蝶, 等. 定点饱和突变改善米曲霉木聚糖酶的温度特性. 食品与生物技术学报, 2019, 38(7):65-70.
[26]   Wu Q, Zang J, Hu D, et al. Improvement in the temperature properties of xylanase by site-saturated mutagenesis. Journal of Food Science and Biotechnology, 2019, 38(7):65-70.
[27]   Takita T, Nakatani K, Katano Y, et al. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis. Enzyme and Microbial Technology, 2019, 130:109363.
doi: 10.1016/j.enzmictec.2019.109363
[28]   Lai Z H, Zhou C, Ma X C, et al. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. International Journal of Biological Macromolecules, 2021, 170:164-177.
doi: 10.1016/j.ijbiomac.2020.12.137
[29]   Cayetano-Cruz M, Caro-Gómez L A, Plascencia-Espinosa M, et al. Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda: a biochemical and molecular dynamic simulation analysis. Bioscience, Biotechnology, and Biochemistry, 2021, 85(9):1971-1985.
doi: 10.1093/bbb/zbab124
[30]   Li G Q, Zhou X, Li Z H, et al. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Applied Microbiology and Biotechnology, 2021, 105(11):4561-4576.
doi: 10.1007/s00253-021-11340-9
[31]   Li Q, Wu T, Duan Y, et al. Improving the thermostability and pH stability of Aspergillus niger xylanase by site-directed mutagenesis. Applied Biochemistry and Microbiology, 2019, 55(2):136-144.
doi: 10.1134/S0003683819020108
[32]   Min K, Kim H, Park H J, et al. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. Bioresource Technology, 2021, 340:125737.
doi: 10.1016/j.biortech.2021.125737
[33]   Xiang L, Wang M X, Wu L, et al. Structural insights into xylanase mutant 254RL1 for improved activity and lower pH optimum. Enzyme and Microbial Technology, 2021, 147:109786.
doi: 10.1016/j.enzmictec.2021.109786
[34]   Teng C, Jiang Y F, Xu Y Q, et al. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. International Journal of Biological Macromolecules, 2019, 128:354-362.
doi: 10.1016/j.ijbiomac.2019.01.087
[35]   王希曼, 陈建华. 易错PCR在酶的非理性设计改造中的应用. 科学技术创新, 2019(13):46-47.
[35]   Wang X M, Chen J H. Application of error-prone PCR in irrational design and transformation of enzyme. Scientific and Technological Innovation, 2019(13):46-47.
[36]   刘俊. 利用组合突变提高木聚糖酶耐碱性的研究. 临汾: 山西师范大学, 2017.
[36]   Liu J. Study on improving the alkali resistance of xylanase by combination mutation. Linfen: Shanxi Normal University, 2017.
[37]   Chen Y L, Tang T Y, Cheng K J. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Canadian Journal of Microbiology, 2001, 47(12):1088-1094.
pmid: 11822834
[38]   汪俊卿. 宇佐美曲霉木聚糖酶AusXyn10A的克隆表达及耐热性的改造研究. 无锡: 江南大学, 2014.
[38]   Wang J Q. Cloning and expression of xylanase AusXyn10A from Aspergillus usamii E001and its thermostability improvement. Wuxi: Jiangnan University, 2014.
[39]   Li Q, Sun B G, Jia H Y, et al. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics. International Journal of Biological Macromolecules, 2017, 101:366-372.
doi: 10.1016/j.ijbiomac.2017.03.135
[40]   Bai W Q, Cao Y F, Liu J, et al. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnology, 2016, 16(1):1-9.
doi: 10.1186/s12896-015-0230-0
[41]   曹宇帆. 提高11家族木聚糖酶嗜碱性的分子改造. 临汾: 山西师范大学, 2016.
[41]   Cao Y F. Improving the alkalophilic performances of family 11 xylanase by molecular modification. Linfen: Shanxi Normal University, 2016.
[42]   Xu H, Zhang F W, Shang H Y, et al. Alkalophilic adaptation of XynB endoxylanase from Aspergillus niger via rational design of pKa of catalytic residues. Journal of Bioscience and Bioengineering, 2013, 115(6):618-622.
doi: 10.1016/j.jbiosc.2012.12.006
[43]   石敢当, 张光亚, 方柏山. 新型G/11家族木聚糖酶的设计及生物学分析. 华侨大学学报(自然科学版), 2008, 29(4):559-562.
[43]   Shi G D, Zhang G Y, Fang B S. Design and bioinformatical analysis of a novel G/11 xylanase. Journal of Huaqiao University (Natural Science), 2008, 29(4):559-562.
[44]   Khandeparkar R, Bhosle N B. Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technology, 2007, 98(4):897-903.
pmid: 16617015
[45]   Lin X Q, Han S Y, Zhang N, et al. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme and Microbial Technology, 2013, 52(2):91-98.
doi: 10.1016/j.enzmictec.2012.10.011
[46]   Nagar S, Gupta V K. Hyper production and eco-friendly bleaching of kraft pulp by xylanase from Bacillus pumilus SV-205 using agro waste material. Waste and Biomass Valorization, 2021, 12:4019-4031.
doi: 10.1007/s12649-020-01258-0
[47]   马乐凡, 李洪兵, 邓思任, 等. 木聚糖酶辅助芦苇KP浆CEH漂白. 湖南造纸, 2014 (2):6-9.
[47]   Ma L F, Li H B, Deng S R, et al. Xylanase assisted CEH Bleaching of reed KP pulp. Hunan Papermaking, 2014(2):6-9.
[48]   邹连杰, 史军伟, 王庆涛. 木聚糖酶在碱法麦草浆生产中的应用. 中华纸业, 2020, 41(14):67-69.
[48]   Zou L J, Shi J W, Wang Q T. Application of xylanase in the production of alkaline wheat straw pulp. China Pulp & Paper Industry, 2020, 41(14):67-69.
[49]   Pandey L K, Kumar A, Singh S P, et al. Xylanase pretreatment of mechanically destructured chips of eucalyptus tereticornis and its effect on kraft pulping. BioResources, 2021, 16(3):5361-5375.
doi: 10.15376/biores
[50]   Akgül M, Gücüᶊ M O, Üner B, et al. Effect of xylanase pretreatment on the kraft pulping of poplar. BioResources, 2021, 16(1):979-986.
doi: 10.15376/biores
[51]   刘姗姗, 贺会利, 张强, 等. 木聚糖酶处理改善废纸浆强度性能的研究. 中华纸业, 2019, 40(6):31-35.
[51]   Liu S S, He H L, Zhang Q, et al. A study on physical property improvement of recycled pulp through xylanase treatment. China Pulp & Paper Industry, 2019, 40(6):31-35.
[52]   Desai D I, Iyer B D. Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. Biocatalysis and Agricultural Biotechnology, 2016, 5:78-85.
doi: 10.1016/j.bcab.2015.11.001
[53]   管敏. 绿色木霉VKF3中提取的木聚糖酶用于废旧新闻纸的脱墨. 造纸化学品, 2017, 29(5):19-24.
[53]   Guan M. Xylanase extracted from Trichoderma viride VKF3 was used for deinking waste newsprint. Paper Chemicals, 2017, 29(5):19-24.
[54]   张明. 天然脂肪酸基载木聚糖酶脱墨剂的制备及其ONP脱墨应用研究. 广州: 华南理工大学, 2017.
[54]   Zhang M. Preparation of natural xylanase loaded fatty acid-based deinking agent and its application in ONP deinking. Guangzhou: South China University of Technology, 2017.
[55]   Sango C, Pathak P, Bhardwaj N K, et al. Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper. Environmental Science and Pollution Research International, 2021, 28(43):61317-61328.
doi: 10.1007/s11356-021-14709-5
[1] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[2] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[3] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[4] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[5] WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials[J]. China Biotechnology, 2016, 36(8): 89-98.
[6] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[7] TANG Cun-duo, SHI Hong-ling, TANG Qing-hai, JIAO Zhu-jing, KAN Yun-chao, WU Min-chen, LI Jian-fang. Recent Trends in Discovery and Protein Engineering of Biocatalysts[J]. China Biotechnology, 2014, 34(9): 113-121.
[8] LI Yan, LONG Zhu, JIANG Hua, LI Hai-Feng, FENG Fei. Preparation and Application of Modified Chitosan Magnetic Particle Flocculant in Treatment for Wastewater of Pulping and Papermaking[J]. China Biotechnology, 2010, 30(06): 65-69.
[9] GAO Diao-Wei, ZHANG Yu-Hong, ZHANG Wei. Advances in Molecular Modification of Microbial Enzymes[J]. China Biotechnology, 2010, 30(01): 98-103.