Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (7): 22-31    DOI: 10.13523/j.cb.2103050
    
Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae
WANG Shan1,XUE Zheng-lian1,2,3,*(),SUN Jun-feng1,WANG Fang1,ZHOU Jian1,LIU Yan1,2,3,WANG Zhou1,2,3
1 College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
2 Anhui Engineering Technology Research Center of Microbial Fermentation, Wuhu 241000, China
3 Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu 241000, China
Download: HTML   PDF(1735KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Streptomyces fradiae is the main production strain of the aminoglycoside antibiotic neomycin. Its neomycin B has strong antibacterial activity, anti-cancer and anti-HIV effects, and it is of great significance to increase the titer of neomycin B.Methods: We added different kinds and concentrations of inorganic salts to the medium to change the physical and chemical properties near the cell wall, osmotic pressure and C/N ratio of the medium under the condition of satisfying the salt ions required for the normal growth of microorganisms.Results: The degree of influence of different inorganic salts on the titer of neomycin B from high to low is (NH4)2SO4, NaCl, KCl and K2SO4 from high to low, and the titer of neomycin B reached the highest value of 15 864 U/mL when 60 mmol/L (NH4)2SO4 was added, the maximum yield of NaCl at 80 mmol/L concentration was 7 429.7 U/mL, which was 3.8 times and 0.82 times higher than that without adding inorganic salts. Then we added different concentrations of (NH4)2SO4 to the culture medium containing 80 mmol/L NaCl and sampled them regularly to detect the changes of amino nitrogen, reducing sugar, pH, TG, bacterial concentration and neomycin B titer, it was found that the consumption rate of amino nitrogen, reducing sugar and TG was increased at the concentration of 60 mmol/L (NH4)2SO4, the maximum specific growth rate of mycelium was 0.097 /h, the synthesis of neomycin B was accelerated and the yield was increased to 17 399 U/mL, at the same time, the mycelium was shortened and the sporulation was advanced.Conclusion: The salt-enhanced culture could be used as a morphological engineering method to improve the yield of neomycin B by changing the microscopic morphology of Streptomyces fradiae. It can also be used as a medium optimization strategy to increase the yield of neomycin B, which laid the foundation for further studies on increasing the yield of Streptomyces secondary metabolite.



Key wordsStreptomyces fradiae      Salt enhanced culture      Neomycin     
Received: 21 March 2021      Published: 03 August 2021
ZTFLH:  Q819  
Corresponding Authors: Zheng-lian XUE     E-mail: xuezl@ahpu.edu.cn
Cite this article:

WANG Shan,XUE Zheng-lian,SUN Jun-feng,WANG Fang,ZHOU Jian,LIU Yan,WANG Zhou. Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae. China Biotechnology, 2021, 41(7): 22-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103050     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I7/22

Fig.1 The titer of neomycin B in different concentrations of inorganic salts
Fig.2 The specific growth rate and neomycin B titer under different (NH4)2SO4 concentrations (a) The specific growth rate at different (NH4)2SO4 concentrations (b) The titer of neomycin B at different (NH4)2SO4 concentrations
Fig.3 The pH at different (NH4)2SO4 concentrations
Fig. 4 The TG, amino nitrogen and residual sugar at different (NH4)2SO4 concentrations (a) The TG content at different (NH4)2SO4 concentrations (b) The amino nitrogen content at different (NH4)2SO4 concentrations (c) The residual sugar content at different (NH4)2SO4 concentrations
Fig.5 The parameters of fermentation process under the addition of 60 mmol/L (NH4)2SO4
Fig.6 The parameters of fermentation process without (NH4)2SO4 addition
发酵过程参数 (NH4)2SO4浓度
0 mmol/L 60 mmol/L
最大比生长率(1/h) 0.06 0.097
新霉素B效价(U/mL) 7 429.7 17 399
TG含量(mmol/gprot) 1.13 0.335
残糖含量(g/L) 14.01 7.33
氨基氮含量(mg/100mL) 66.223 74.219
最大新霉素B效价增长率[U/(mL·h)] 70.743 259.09
最大还原糖消耗速率[g /(L·h)] 0.789 1.228
最大TG消耗速率[mmol/(gprot·h)] 0.021 0.066
Table 1 The parameters of fermentation process at two (NH4)2SO4 concentrations
Fig.7 The morphology of S. fradiae at different fermentation times under zero addition and 60 mmol/L (NH4)2SO4 addition (a, b) The hyphae morphology of S. fradiae under the addition of 0 and 60 mmol/L (NH4)2SO4 at 1, 3, 5, and 7 days, respectively
[1]   Baltz R H. Strain improvement in actinomycetes in the postgenomic era. Journal of Industrial Microbiology & Biotechnology, 2011, 38(6):657-666.
[2]   余飞, 孙俊峰, 刘鹏飞, 等. 弗氏链霉菌产硫酸新霉素高通量选育模型的建立及优化. 食品与发酵工业, 2019, 45(8):162-167, 177.
[2]   Yu F, Sun J F, Liu P F, et al. A high-throughput screening method for selecting Streptomyces fradiae mutants with improved neomycin yield and its optimization. Food and Fermentation Industries, 2019, 45(8):162-167, 177.
[3]   Guan H Y, Li Y, Zheng J Z, et al. Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Science China Life Sciences, 2019, 62(12):1638-1654.
doi: 10.1007/s11427-019-1597-6
[4]   Ray S, Maitra A, Biswas A, et al. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from Streptomyces fradiae. Journal of Biological Chemistry, 2017, 292(37):15301-15311.
doi: 10.1074/jbc.M117.788000
[5]   Liu R, Deng Z X, Liu T G. Streptomyces species: ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 2018, 50(1):74-84.
doi: 10.1016/j.ymben.2018.05.015
[6]   Chen L C, Feng Z M, Yue H, et al. Exosomes derived from HIV-1-infected cells promote growth and progression of cancer via HIV TAR RNA. Nature Communications, 2018, 9(1):4585-4591.
doi: 10.1038/s41467-018-07006-2
[7]   Swiatkowska A, Dutkiewicz M, Machtel P, et al. Regulation of the p53 expression profile by hnRNP K under stress conditions. RNA Biology, 2020, 17(10):1402-1415.
doi: 10.1080/15476286.2020.1771944 pmid: 32449427
[8]   Jaiswal S K, Oh J J, DePamphilis M L. Cell cycle arrest and apoptosis are not dependent on p53 prior to p53-dependent embryonic stem cell differentiation. Stem Cells (Dayton, Ohio), 2020, 38(9):1091-1106.
[9]   Cuccarese M F, Singh A, Amiji M, et al. A novel use of gentamicin in the ROS-mediated sensitization of NCI-H460 lung cancer cells to various anticancer agents. ACS Chemical Biology, 2013, 8(12):2771-2777.
doi: 10.1021/cb4007024 pmid: 24093441
[10]   Waksman S A, Lechevalier H A. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science, 1949, 109(2830):305-307.
pmid: 17782716
[11]   马次郎, 陈奕公, 刘晓明, 等. 双拷贝tylD、tylF和tylJ弗氏链霉菌工程菌株构建及其发酵性能研究. 中国抗生素杂志, 2019, 44(8):915-919.
[11]   Ma C L, Chen Y G, Liu X M, et al. Construction of a double-copy tylD, tylF and tylJ Streptomyces fradie strain and evaluation of its fermentation performance. Chinese Journal of Antibiotics, 2019, 44(8):915-919.
[12]   李思聪, 孙宇辉. 氨基糖苷类抗生素生物合成研究进展. 中国抗生素杂志, 2019, 44(11):1261-1274.
[12]   Li S C, Sun Y H. Research advances in aminoglycoside biosynthesis. Chinese Journal of Antibiotics, 2019, 44(11):1261-1274.
[13]   Kudo F, Eguchi T. Biosynthetic genes for aminoglycoside antibiotics. The Journal of Antibiotics, 2009, 62(9):471-481.
doi: 10.1038/ja.2009.76
[14]   Dobson L F, O’Cleirigh C C, O’Shea D G. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Applied Microbiology and Biotechnology, 2008, 79(5):859-866.
doi: 10.1007/s00253-008-1493-3 pmid: 18443778
[15]   Antecka A, Bizukojc M, Ledakowicz S. Modern morphological engineering techniques for improving productivity of filamentous fungi in submerged cultures. World Journal of Microbiology and Biotechnology, 2016, 32(12):193-196.
pmid: 27718148
[16]   Kaup B A, Ehrich K, Pescheck M, et al. Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces Fumago as an example. Biotechnology and Bioengineering, 2008, 99(3):491-498.
doi: 10.1002/(ISSN)1097-0290
[17]   Meier K, Klöckner W, Bonhage B, et al. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochemical Engineering Journal, 2016, 109:228-235.
doi: 10.1016/j.bej.2016.01.014
[18]   Ibrahim D, Weloosamy H, Lim S H. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation. World Journal of Biological Chemistry, 2015, 6(3):265-271.
doi: 10.4331/wjbc.v6.i3.265 pmid: 26322181
[19]   Liu H, Zheng Z M, Wang P, et al. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 2013, 97(8):3363-3372.
doi: 10.1007/s00253-012-4581-3
[20]   徐欢欢, 张红兵, 李会宣, 等. 常压室温等离子体技术在微生物诱变中的应用进展. 生物技术进展, 2020, 10(4):358-362.
[20]   Xu H H, Zhang H B, Li H X, et al. Application progress of atmospheric and room temperature plasma technology in microbial mutagenesis. Current Biotechnology, 2020, 10(4):358-362.
[21]   杨美成, 刘振, 严小蕾, 等. 柱前衍生化HPLC法测定硫酸庆大霉素和硫酸新霉素的含量. 中国临床药学杂志, 2004, 13(5):288-291.
[21]   Yang M C, Liu Z, Yan X L, et al. HPLC method using pre-column derivatization for determination of the content of gentamicin sulfate and neomycin sulfate. Chinese Journal of Clinical Pharmacy, 2004, 13(5):288-291.
[22]   张小贝, 朱国鹏, 祝志欣, 等. 利用3, 5-二硝基水杨酸法测定菜用甘薯叶中的多糖含量. 热带生物学报, 2017, 8(3):359-363, 377.
[22]   Zhang X B, Zhu G P, Zhu Z X, et al. Determination of the polysaccharide content of sweet potato leaves by using 3'5'-dinitrosalicylic acid(DNS). Journal of Tropical Biology, 2017, 8(3):359-363, 377.
[23]   黄晓东. 甲醛法测定酱油中氨基氮含量的简化. 中国调味品, 1997(12):23.
[23]   Huang X D. Simplification of determination of amino nitrogen content in soy sauce by formaldehyde method. Chinese Condiment, 1997(12):23.
[24]   刘鹏飞, 孙俊峰, 王珊, 等. 通气量对新霉素种子罐代谢影响的研究. 中国抗生素杂志, 2020, 45(12):1227-1231.
[24]   Liu P F, Sun J F, Wang S, et al. Effects of aeration rates on metabolism of neomycin seed tank. Chinese Journal of Antibiotics, 2020, 45(12):1227-1231.
[25]   Tesche S, Rösemeier-Scheumann R, Lohr J, et al. Salt-enhanced cultivation as a morphology engineering tool for filamentous actinomycetes: increased production of labyrinthopeptin A1 in Actinomadura namibiensis. Engineering in Life Sciences, 2019, 19(11):781-794.
doi: 10.1002/elsc.v19.11
[26]   徐峰, 原玉洁, 黄明志, 等. 定量代谢物组学研究硫酸铵添加对高产红色糖多孢菌生理代谢的影响. 食品工业科技, 2020, 41(23):91-98.
[26]   Xu F, Yuan Y J, Huang M Z, et al. Impacts of ammonium sulfate addition on physiological metabolism of high-yielding Saccharopolyspora erythraea based on quantitative metabonomics. Science and Technology of Food Industry, 2020, 41(23):91-98.
[27]   Gonzalez R, Islas L, Obregon A M, et al. Gentamicin formation in Micromonospora purpurea: stimulatory effect of ammonium. The Journal of Antibiotics, 1995, 48(6):479-483.
doi: 10.7164/antibiotics.48.479
[28]   Technikova-Dobrova Z, Damiano F, Tredici S M, et al. Design of mineral medium for growth of Actinomadura sp ATCC 39727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources. Applied Microbiology and Biotechnology, 2004, 65(6):671-677.
pmid: 15138731
[29]   Zhu C H, Lu F P, He Y N, et al. Regulation of avilamycin biosynthesis in Streptomyces viridochromogenes: effects of glucose, ammonium ion, and inorganic phosphate. Applied Microbiology and Biotechnology, 2007, 73(5):1031-1038.
doi: 10.1007/s00253-006-0572-6
[30]   Hong M, Mou H, Liu X Y, et al. 13C-assisted metabolomics analysis reveals the positive correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size in Saccharopolyspora erythraea. Bioprocess and Biosystems Engineering, 2017, 40(9):1337-1348.
doi: 10.1007/s00449-017-1792-0
[31]   Xia X, Lin S J, Xia X X, et al. Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Applied Microbiology and Biotechnology, 2014, 98(10):4399-4407.
doi: 10.1007/s00253-014-5555-4
[32]   Meng X X, Wang W Z, Xie Z J, et al. Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Science China Life Sciences, 2017, 60(9):980-991.
doi: 10.1007/s11427-017-9120-8
[33]   Wu Y T, Kang Q J, Zhang L L, et al. Subtilisin-involved morphology engineering for improved antibiotic production in Actinomycetes. Biomolecules, 2020, 10(6):851.
doi: 10.3390/biom10060851
[34]   Dobson L F, O’Cleirigh C C, O’Shea D G. The influence of morphology on geldanamycin production in submerged fermentations of Streptomyces hygroscopicus var. geldanus. Applied Microbiology and Biotechnology, 2008, 79(5):859-866.
doi: 10.1007/s00253-008-1493-3 pmid: 18443778
[35]   Fuchino K, Flärdh K, Dyson P, et al. Cell-biological studies of osmotic shock response in Streptomyces spp. Journal of Bacteriology, 2017, 199(1):e00465-e00481.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.