Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (12): 64-72    DOI: 10.13523/j.cb.20191209
    
Research Progress of Autophagy Induced Protection by Nanomaterials
ZHAN Hui-lu1,2,3,BAI Ying1,2,ZHUANG Yan1,2,MENG Juan1,2,ZHAO Hai-yang1,2,3,*()
1 Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
2 Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, Zhejiang 325035, China
3 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
Download: HTML   PDF(864KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lysosomal-autophagy system plays a critical part in the adaptive response of cells to nanomaterials. Autophagy has great utility in protecting cells from damage and keeping them stable. However, the essence of autophagy induced by nanomaterials is still unclear. Nanomaterials are recognized as alien invaders, the accumulation of which will activate the body's clearance mechanism. And this will lead to autophagy after the absorption of nanomaterials. This review introduces the self-protection mechanism of autophagy induced by nanomaterials, and analyzes the influence of nanomaterials on lysosomal-autophagy system and their biological effects comprehensively.



Key wordsAutophagy      Lysosomal      Nanomaterials      Liver injury     
Received: 28 April 2019      Published: 15 January 2020
ZTFLH:  Q819  
Corresponding Authors: Hai-yang ZHAO     E-mail: haiyangwzu@163.com
Cite this article:

ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials. China Biotechnology, 2019, 39(12): 64-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191209     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I12/64

Fig.1 Autophagy formation process and its molecular mechanism
Fig.2 Autophagy formation related signaling pathway
[1]   Lee J, Giordano S, Zhang J.Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 2012, 441(2): 523-540.
[2]   Mizushima N, Komatsu M.Autophagy: renovation of cells and tissues. Cell, 2011, 147(4): 728-741.
[3]   Switon K, Kotulska K, Janusz-Kaminska A, et al.Molecular neurobiology of mTOR. Neuroscience, 2017, 341: 112-153.
[4]   Srivastava V, Gusain D, Sharma Y C.Critical review on the toxicity of some widely used engineered nanoparticles. Industrial & Engineering Chemistry Research, 2015, 54(24): 6209-6233.
[5]   He C, Klionsky D J.Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 2009, 43: 67-93.
[6]   Dikic I, Elazar Z.Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364.
[7]   Takamura A, Komatsu M, Hara T, et al.Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 2011, 25(8): 795-800.
[8]   Eskelinen E L.The dual role of autophagy in cancer. Curr Opin Pharmacol, 2011, 11(4): 294-300.
[9]   Kimmelman A C, White E.Autophagy and tumor metabolism. Cell Metab, 2017, 25(5): 1037-1043.
[10]   Green D R, Levine B.To be or not to be? How selective autophagy and cell death govern cell fate. Cell, 2014, 157(1): 65-75.
[11]   Füllgrabe J, Klionsky D J, Joseph B.The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol, 2014, 15(1): 65-74.
[12]   Codogno P, Mehrpour M, Proikas-Cezanne T.Canonical and non-canonical autophagy: variations on a common theme of self-eating. Nat Rev Mol Cell Biol, 2011, 13(1): 7-12.
[13]   Mari?o G, Niso-Santano M, Baehrecke E H, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014, 15(2): 81-94.
[14]   Mizushima N, Yoshimori T, Ohsumi Y.The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 2011, 27: 107-132.
[15]   Komatsu M, Kageyama S, Ichimura Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol Res, 2012, 66(6): 457-462.
[16]   Vousden K H, Lane D P. p53 in health and disease. Nat Rev Mol Cell Biol, 2007, 8(4): 275-283.
[17]   Denisenko T V, Pivnyuk A D, Zhivotovsky B. p53-Autophagy-Metastasis Link. Cancers (Basel), 2018, 10(5): 148.
[18]   Kenzelmann Broz D, Spano Mello S, Bieging K T, et al.Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev, 2013, 27(9): 1016-1031.
[19]   Tasdemir E, Maiuri M C, Orhon I, et al.p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle, 2008, 7(19): 3006-3011.
[20]   Tsujimoto Y, Shimizu S.Another way to die: autophagic programmed cell death. Cell Death Differ, 2005, 12: 1528-1534.
[21]   Moore M N.Autophagy as a second level protective process in conferring resistance to environmentally-induced oxidative stress. Autophagy, 2008, 4(2): 254-256.
[22]   Ilyas G, Zhao E, Liu K, et al.Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol, 2016, 64(1): 118-127.
[23]   Seleverstov O, Zabirnyk O, Zscharnack M, et al.Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett, 2006, 6(12): 2826-2832.
[24]   Stern S T, Zolnik B S,McLeland C B, et al.Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials. Toxicol Sci, 2008, 106(1): 140-152.
[25]   Yu L, Lu Y, Man N, et al.Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small, 2009, 5(24): 2784-2787.
[26]   Seleverstov O, Phang J M, Zabirnyk O.Semiconductor nanocrystals in autophagy research: methodology improvement at nanosized scale. Methods Enzymol, 2009, 452: 277-296.
[27]   Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, et al.Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J, 2012, 441(3): 813-821.
[28]   Li J J, Hartono D, Ong C N, et al.Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials, 2010, 31(23): 5996-6003.
[29]   Chen Y, Yang L, Feng C, et al.Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells. Biochem Biophys Res Commun, 2005, 337(1): 52-60.
[30]   Man N, Yu L, Yu S H, et al.Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 2010, 6(2): 310-311.
[31]   Zhang Y, Yu C, Huang G, et al.Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy. Int J Nanomedicine, 2010, 5: 601-609.
[32]   Zhang Q, Yang W, Man N, et al.Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 2009, 5(8): 1107-1117.
[33]   Wu Y N, Yang L X, Shi X Y, et al.The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011, 32(20): 4565-4573.
[34]   Li H, Li Y, Jiao J, et al.Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat Nanotechnol, 2011, 6(10): 645-650.
[35]   Li C, Liu H, Sun Y, et al.PAMAM nanoparticles promote acute lung injury by inducing autophagic cell death through the Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol, 2009, 1(1): 37-45.
[36]   Man N, Chen Y, Zheng F, et al.Induction of genuine autophagy by cationic lipids in mammalian cells. Autophagy, 2010, 6(4): 449-454.
[37]   Donaldson K, Poland C A.Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol, 2013, 24(4): 724-734.
[38]   Pelaz B, Charron G, Pfeiffer C, et al.Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small, 2013, 9(9-10): 1573-1584.
[39]   Armstead A L, Li B.Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine, 2016, 11: 6421-6433.
[40]   Lim E K, Kim T, Paik S, et al.Nanomaterials for theranostics: recent advances and future challenges. Chem Rev, 2015, 115(1): 327-394.
[41]   Etheridge M L, Campbell S A, Erdman A G, et al.The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine, 2013, 9(1): 1-14.
[42]   Wang B, He X, Zhang Z, et al.Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res, 2013, 46(3): 761-769.
[43]   Park J K, Utsumi T, Seo Y E, et al.Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine, 2016, 12(5): 1365-1374.
[44]   Zhu S, Zhang J, Zhang L, et al.Inhibition of kupffer cell autophagy abrogates nanoparticle-induced liver injury. Adv Healthc Mater, 2017, 6(9): 1601252.
[45]   Lee T Y, Liu M S, Huang L J, et al.Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part Fibre Toxicol, 2013, 10: 40.
[46]   Galluzzi L, Pietrocola F, Levine B, et al.Metabolic control of autophagy. Cell, 2014, 159(6): 1263-1276.
[47]   Kermanizadeh A, Jantzen K, Ward M B, et al.Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials: The role of autophagy and apoptosis. Nanotoxicology, 2017, 11(2): 184-200.
[48]   Wang Q, Zhou Y, Fu R, et al.Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live C. elegans. Nanoscale, 2018, 10(48): 23059-23069.
[49]   Schroder K, Tschopp J.The inflammasomes. Cell, 2010, 140(6): 821-832.
[50]   Rikiishi H.Novel insights into the interplay between apoptosis and autophagy. Int J Cell Biol, 2012, 2012: 317645.
[51]   Kubes P, Mehal W Z.Sterile inflammation in the liver. Gastroenterology, 2012, 143(5): 1158-1172.
[52]   Han J, Bae J, Choi C Y, et al.Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy, 2016, 12(12): 2326-2343.
[53]   Wei P, Yang F, Zheng Q, et al.The potential role of the NLRP3 inflammasome activation as a link between mitochondria ROS generation and neuroinflammation in postoperative cognitive dysfunction. Front Cell Neurosci, 2019, 13: 73.
[54]   Saitoh T, Fujita N, Jang M H, et al.Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 2008, 456(7219): 264-268.
[55]   Nakahira K, Haspel J A, Rathinam V A, et al.Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol, 2011, 12(3): 222-230.
[56]   Xia T, Kovochich M, Brant J, et al.Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett, 2006, 6(8): 1794-1807.
[57]   Zhou R, Yazdi A S, Menu P, et al.A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329): 221-225.
[58]   Juarez-Moreno K, Gonzalez E B, Girón-Vazquez N, et al.Comparison of cytotoxicity and genotoxicity effects of silver nanoparticles on human cervix and breast cancer cell lines. Hum Exp Toxicol, 2017, 36(9): 931-948.
[59]   Costa C S, Ronconi J V, Daufenbach J F, et al.In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem, 2010, 342(1-2): 51-56.
[60]   Cha K, Hong H W, Choi Y G, et al.Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett, 2008, 30(11): 1893-1899.
[61]   Mirzoeva O K, Hann B, Hom Y K, et al.Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. J Mol Med (Berl), 2011, 89(9): 877-889.
[62]   LoPiccolo J, Blumenthal G M, Bernstein W B, et al. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat, 2008, 11(1-2): 32-50.
[63]   Mamane Y, Petroulakis E, LeBacquer O, et al.mTOR, translation initiation and cancer. Oncogene, 2006, 25(48): 6416-6422.
[64]   Kuraishy A, Karin M, Grivennikov S I.Tumor promotion via injury- and death-induced inflammation. Immunity, 2011, 35(4): 467-477.
[65]   Hussain S M, Frazier J M.Cellular toxicity of hydrazine in primary rat hepatocytes. Toxicol Sci, 2002, 69(2): 424-432.
[66]   Chen Q, Xue Y, Sun J.Hepatotoxicity and liver injury induced by hydroxyapatite nanoparticles. J Appl Toxicol, 2014, 34(11): 1256-1264.
[67]   Wang Y, Xu X, Gu Y, et al.Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv, 2018, 15(7): 687-701.
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[4] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[7] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[8] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[9] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[10] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[11] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[12] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[13] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[14] ZHAO Yuan-bo, HONGDu Bei-qi, CHEN Ying-yu. Establishment of p62/SQSTM1-luciferase Based Method for Cellular Autophagic Flux Determination[J]. China Biotechnology, 2016, 36(1): 55-62.
[15] ZHU Zhi-jian, LIAN Kai-qi, ZHENG Hai-xue, YANG Xiao-pu. The Research Progress About Invasion of Foot and Mouth Virus to Cells[J]. China Biotechnology, 2015, 35(5): 103-108.