Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 70-77    DOI: 10.13523/j.cb.20191108
    
DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells
ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping()
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML   PDF(757KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nitrile hydratase are enzymes that catalyze the conversion of nitriles to their corresponding amides. There are many problems in the catalytic process of free cells containing nitrile hydratases, such as low cell utilization rate and the high cost of later separation, which can be solved effectively by immobilization of cells. Several commonly embedding immobilization methods by evaluating the reaction batches and the activity recovery rate of immobilized enzymes with nitrile hydratase containing recombinant E.coli cells as the research object to find a suitable immobilization method were compared.The results showed that DA-F127 was the most suitable material for immobilization of recombinant E. coli cells. When the concentration of DA-F127 was 15%, the UV irradiation distance was 20cm, the irradiation time was 6min, and the cell content was 20mg/g carrier, the recovery rate of enzyme activity is 89.74%, and it could be reused up for 9 batches to covert 150g/L 3-cyanopyridine. The conversion rate of the ninth batch could reach to 98.26%. The nicotinamide yield was increased by 12 times compared with the same amount of free cell catalysis.



Key wordsDA-F127      Nitrile hydratase      Immobilization cell      Nicotinamide     
Received: 12 March 2019      Published: 17 December 2019
ZTFLH:  Q814  
Corresponding Authors: Jian-ping WU     E-mail: wjp@zju.edu.cn
Cite this article:

ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells. China Biotechnology, 2019, 39(11): 70-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191108     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/70

Immobilization
method
Shape Strength Enzyme recovery
(%)
Calcium alginate Bead ++++ 48.08±2.16
Polyacryamide Cube ++++ 54.93±1.83
DA-F127 Cube ++++ 61.28±2.64
Carrageenan Cube ++ 47.43±2.27
Agar Cube +++ 34.76±1.86
Table 1 Comparison of different immobilization method
Fig.1 Batch reaction of different immobilization methods
DA-F127
concentration
(%)
UV
irradiation time
(min)
Cell embedding
amount(mg)
Enzyme
recovery
(%)
10 10 12 62.32 ± 3.71
15 10 12 57.86 ± 2.47
20 10 12 56.61 ± 3.34
25 10 12 44.67 ± 1.73
Table 2 Effect of DA-F127 concentration on enzyme recovery
Fig.2 Effect of different DA-F127 concentrations on reaction batches
Fig.3 Effect of UV irradiation distance on enzyme recovery rate of immobilized cells
UV irradiation
time(min)
DA-F127
concentration
(%)
Cell embedding
amount (mg)
Enzyme
recovery(%)
4 15 12 80.14 ± 2.42
6 15 12 86.28 ± 3.57
8 15 12 66.68 ± 1.66
10 15 12 53.31 ± 3.13
12 15 12 20.56 ± 2.85
Table 3 Effect of UV irradiation time on enzyme recovery
Fig.4 Effect of UV irradiation time on reaction batches
Cell embedding
amount (mg)
DA-F127
concentration
(%)
UV irradiation
time(min)
Enzyme
recovery
(%)
4 15 6 74.13 ± 2.29
8 15 6 76.08 ± 3.57
12 15 6 83.16 ± 2.64
16 15 6 84.30 ± 1.76
20 15 6 89.74 ± 1.58
24 15 6 82.92 ± 1.47
28 15 6 80.57 ± 2.56
Table 4 Effect of cell addition amount on enzyme recovery
Fig.5 Effect of pH on catalytic reaction of immobilized cell
Fig.6 pH stability of DA-F127 immobilized cell
Fig.7 Effect of temperature on catalytic reaction of immobilized cell
Fig.8 Temperature stability of DA-F127 immobilized cell
Fig.9 Batch reaction of 3-cyanopyridine-catalyzed by DA-F127 immobilized cell
[1]   Chen Y Z, Jiao S, Wang M M , et al. A novel molecular chaperone GroEL2 from Rhodococcus ruber and its fusion chimera with nitrile hydratase for co-enhanced activity and stability. Chemical Engineering Science, 2018,192(1):235-243.
doi: 10.1016/j.ces.2018.07.045
[2]   Shaw N M, Robins K T, Kiener A . Lonza: 20 years of biotransformations. Adv Synth Catal, 2003,345(4) : 425-435.
doi: 10.1002/adsc.200390049
[3]   Singh R, Devi N, Chand D , et al. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6. Bioprocess Biosyst Eng, 2018,41(8) : 1225-1232.
doi: 10.1007/s00449-018-1951-y pmid: 29748858
[4]   尹灵富 . 生物催化技术生产烟酰胺的研究. 杭州: 浙江工业大学, 2004.
[4]   Yin L F . Production of nicotinamide by biological catalyst. Hangzhou: Zhejiang University of Technology, 2004.
[5]   Zigova J, Robins K, Bartek J. Polyacrylamide beads containing encapsulated cells: America, US20070822928. 2007-11-08[2019-4-10]. .
[6]   刘善和, 钱前, 梁锡臣 , 等. 一种利用固定化细胞将烟腈转化为烟酰胺的方法: 中国, CN201510115815.9. 2015-07-08[2019-4-10]. .
[6]   Liu S H, Qian Q, Liang X C. Method of converting nicotinonitrile into nicotinamide with immobilized cells: China, CN201510115815.9. 2015-07-08[2019-4-10]. .
[7]   Singh R, Pandey D, Devi N , et al. Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6. Bioprocess Biosyst Eng, 2018,41(8):1225-1232.
doi: 10.1007/s00449-018-1951-y pmid: 29748858
[8]   Kubac D, Cejkova A, Masak J , et al. Biotransformation of nitriles by Rhodococcus equi A4 immobilized in LentiKats. Journal of Molecular Catalysis B Enzymatic, 2006,39(1-4) : 59-61.
doi: 10.1016/j.molcatb.2006.01.004
[9]   Maksimova Y G, Nikulin S M, Osovetskii B M , et al. Heterogeneous biocatalyst for nitrile and amide transformation based on cells of nitrile-hydrolyzing bacteria and multiwalled carbon nanotubes. Appl Biochem Microbiol , 2017,53(5):506-512.
doi: 10.1134/S0003683817050118
[10]   Lee S Y, Tae G . Formulation and in vitro characterization of an in situ gelable photo-polymerizable Pluronic hydrogel suitable for injection. J Control Release, 2007,119(3) : 313-319.
doi: 10.1016/j.jconrel.2007.03.007 pmid: 17490772
[11]   Rodrigues R O, Baldi G, Doumett S , et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Materials Science and Engineering, 2018,93(1):206-217.
doi: 10.1016/j.msec.2018.07.060 pmid: 30274052
[12]   Pei X L, Zhang H Y, Meng L J , et al. Effciernt cloning and expression of a thermostable nitrile hydratase in Eschericha coli using an auto-induction fed-batch strategy. Process Biochemistry, 2013,48(1):1921-1927.
doi: 10.1016/j.procbio.2013.09.004
[13]   Yang Z F, Pei X L, Xu G , et al. N-terminal engineering of overlapping genes in the nitrile hydratase gene cluster improved its activity. Enzyme & Microbial Technology, 2018,117(1):9-14.
doi: 10.3760/cma.j.issn.0254-6450.2019.11.016 pmid: 31838816
[14]   Duque S M M, Castro I J L, Flores D M . Evaluation of antioxidant and nutritional properties of sago and its utilization for direct lactic acid production using immobilized Enterococcus faecium DMF78. International Food Research Journal, 2018,25(1) : 83-91.
[15]   Li Y M, Gao J Q, Pei X Z , et al. Production of l-alanyl-l-glutamine by immobilized Pichia pastoris GS115 expressing -amino acid ester acyltransferase. Microbial Cell Factories, 2019,18(1):18-27.
doi: 10.1186/s12934-019-1069-1 pmid: 30696431
[16]   Lee S, Tae G, Kim Y H . Thermal gellation and photo-polymerization of di-acrylated Pluronic F 127. Journal of Biomaterials Science Polymer Edition, 2007,18(10):1335-1353.
doi: 10.1163/156856207782177855 pmid: 17939890
[17]   Chun K W, Lee J B, Kim S H , et al. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials, 2005,26(16) : 3319-3326.
doi: 10.1016/j.biomaterials.2004.07.055
[18]   Raj J, Sharma N N, Prasad S , et al. Acrylamide synjournal using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor. J Ind Microbiol Biotechnol, 2008,35(1):35-40.
doi: 10.1007/s10295-007-0263-z pmid: 17994258
[19]   邹树平, 颜海蔚, 胡忠策 , 等. 固定化重组大肠杆菌细胞催化合成(R)一环氧氯丙烷. 现代化工, 2013,33(7):55-59.
[19]   Zou S P, Yan H W, Hu Z C , et al. Synjournal of (R)-epichlorohydrin catalyzed by immobilized recombinant Escherichia coli cells. Modern Chemical Industry, 2013,33(7):55-59.
[20]   裴晓林 . 腈水合酶基因资源开发及其重组表达体系在制备烟酰胺中的应用. 杭州: 浙江大学, 2013.
[20]   Pei X L . Discovery of nitrile hydratase genes and their recombinant expression for the production of nicotinamide. Hangzhou: Zhejiang University, 2013.
[1] WANG Shi-wei, WANG Min, WANG Qing-hui. Purification,Crystallization and Characterization of a Nitrile Hydratase from Rhodococcus ruber CGMCC3090 Strain[J]. China Biotechnology, 2017, 37(10): 42-52.
[2] WANG Li-yan, WANG Yu, WU Jian-ping, XU Gang, YANG Li-rong. Functional Expression of a Nitrile Hydratase from Klebsiella oxytoca KCTC 1686 in E. coli[J]. China Biotechnology, 2016, 36(12): 42-48.
[3] ZHANG Li-ling, WANG Xiao-lan. Optimization Fermentation Conditions of the Nitrile Hydratase Fusant Strain Tolerance to the Substrate[J]. China Biotechnology, 2012, 32(08): 75-80.
[4] WANG Shi-wei, WANG Min. Research Process on Microbial Diversity of Producing-nitrile Hydratase and Study on Nitrile Hydratase[J]. China Biotechnology, 2011, 31(9): 117-123.