Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 31-38    DOI: 10.13523/j.cb.20191104
    
Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice
ZENG Qiang1,2,MENG Qiu-cheng1,DENG Li-hua1,LI Jin-jiang1,YU Jiang-hui1,WENG Lu-shui1,XIAO Guo-ying1,3()
1 Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture,Chinese Academy of Sciences, Changsha 410125, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(1026KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Weeds and insect pests are two important biotic stresses to result in yield loss in rice, and breeding bioengineered rice with herbicide resistance and insect resistance is one of the effective ways to solve these two problems. And for that, the glyphosate resistance and Lepidopteran resistance as well as molecular and some agronomic characteristics of transgenic line E1C608 in rice were identified. Results of molecular identification showed that three independent transformation events were obtained, in which one single copy insertion event was named as E1C608-3. The transformant E1C608-3 of T2 generation was used to detect exogenous protein contents in root, stem and leaf at tillering stage by ELISA. The protein contents of EPSPS and CRY1C in different organs of E1C608-3 were significantly different both in descending order of leaf>stem>oot (P<0.01), ranged from120.16μg/g to 1 223.28μg/g and from 1.23μg/g to 8.72μg/g, respectively. The glyphosate tolerable concentration at seedling stage of E1C608-3 in T3 generation reached at least 16g/L, which was sixteen times higher than that of the transformation receptor R608. The larva mortality of rice leaf roller fed on leaves of E1C608-3 in T3 generation for five days was 95.56%, that showed the E1C608-3 with an excellent resistance to Lepidopteran insects. The data suggested that some agronomic traits were significantly different between E1C608-3 in T4 generation and R608 (P<0.01), but all of the variations were within the variation range of natural germplasm resource in rice. Overall, a novel germplasm with glyphosate resistance and Lepidopteran resistance was verified to be developed in rice.



Key wordsRice      Bioengineering      Glyphosate resistance      Lepidopteran resistance      Agronomic traits     
Received: 28 March 2019      Published: 17 December 2019
ZTFLH:  Q819  
Corresponding Authors: Guo-ying XIAO     E-mail: xiaoguoying@isa.ac.cn
Cite this article:

ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice. China Biotechnology, 2019, 39(11): 31-38.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191104     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/31

Fig. 1 The T-DNA region of plant expression vector pC3300-Epsps-35SCry1Ca
引物 序列 退火温度(℃ ) 产物大小(bp) 检测用途
Epsps -F 5'- CGCCAAGTCTTTGTGGGTG -3' 58 561 PCR Southern
Epsps -R 5'- GTCCACGGTGACAGGGTTC -3'
Cry1C-F 5'- CGTCGCTCAACTGCCTAC -3' 55 287 PCR
Cry1C-R 5'- CCTGAACACGGGTCCATT -3'
Table 1 The primers for PCR and Southern blot
Fig. 2 Molecular identification of T1 transgenic plants (a) PCR detection (b) Southern blotting analysis M: DNA molecular weight marker; +: Plasmid pC3300-Epsps-35SCry1Ca; EcoRI and HindIII: Restriction enzymes; R608: Transformation receptor; 1, 2 and 3: Transformant E1C608-1, E1C608-2, E1C608-3, respectively
Fig. 3 Quantification of EPSPS and CRY1C proteins (a) Comparison of EPSPS protein contents in root, stem and leaf of E1C608-3 (b) Comparison of CRY1C protein contents in root, stem and leaf of E1C608-3 Different capital or small letters mean significant difference at 0.01 or 0.05 level, respectively; and the error bar represents standard deviation
Fig. 4 Spraying glyphosate at different concentrations on T3 generation transgenic plants E1C608-3 is a transgenic line; R608 is of wild type; 0, 0.5g/L, 1g/L, 2g/L, 3g/L, 8g/L, 10g/L, 12g/L, 14g/L and 16g/L indicates different concentrations of glyphosate solution
Fig. 5 Evaluation of resistance to rice leaf roller (a)Leaves gnawed by rice leaf rollers for five days (b) Mortality of rice leaf rollers in five days E1C608 is of single-copy insertion events in T3 generation; R608 is of wild type. Different capital or small letters mean significant difference at 0.01 or 0.05 level, respectively, and the error bar represents standard deviation
品名 R608 E1C608-3
株高(cm) 95.78±1.05Aa(5) 80.72±0.92Bb(3)
穗长(cm) 28.83±0.55Aa(5) 26.12±0.64Bb(5)
有效穗数 14.34±1.22Aa(7) 19.03±1.52Bb(7)
每穗总粒数 149.88±10.32Aa(5) 120.28±9.59Bb(5)
结实率(%) 83.17±1.81Aa(5) 75.09±2.24Bb(7)
千粒重(g) 28.85±0.33Aa(5) 28.05±1.02Aa(5)
理论产量(kg/ha) 11 539.8±1 435.2Aa 10 670.4±1 133.7Ab
Table 2 Agronomic traits and their classifications of transgenic rice E1C608 in T4 generation
[1]   Muthayya S, Sugimoto J D, Montgomery S , et al. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 2014,1324(1):7-14.
doi: 10.1111/nyas.12539 pmid: 25224318
[2]   Oerke E C . Crop losses to pests. Journal of Agricultural Science, 2006,144(144):31-43.
doi: 10.1007/s11274-019-2781-z pmid: 31832786
[3]   Edwards W J . Weed control in roundup ready TM rice . Proceedings of the California Weed Science, 2001,53(3):133-135.
[4]   翁绿水, 蒋利平, 肖国樱 . 抗虫抗除草剂转基因水稻恢复系B2A68的培育. 杂交水稻, 2013,28(1):63-67.
[4]   Weng L S, Jiang L P, Xiao G Y . Development of an insect-resistant and herbicide-resistant transgenic restorer line B2A68 in rice. Hybrid Rice, 2013,28(1):63-67.
[5]   胡利华, 吴慧敏, 周泽民 , 等. 利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86. 分子植物育种, 2006,4(2):160-166.
[5]   Hu L H, Wu H M, Zhou Z M , et al. Introduction of citrate synthase gene (CS) into an elite indica rice restorer line minghui 86 by Agrobacterium-mediated method. Molecular Plant Breeding, 2006,4(2):160-166.
[6]   Deng L H, Weng L S, Xiao G Y . Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice. Journal of Agricultural Science & Technology, 2014,16(1):217-228.
[7]   Padgette S R, Kolacz K H, Delannay X , et al. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science, 1995,35(5):1451-1461.
doi: 10.2135/cropsci1995.0011183X003500050032x
[8]   吴慧敏 . 抗除草剂水稻培育及应用研究. 武汉:华中农业大学, 2005.
[8]   Wu H M . Study on cultivation and application of herbicide resistant rice. Wuhan: Huazhong Agricultural University, 2005.
[9]   肖国樱 . 作物对除草剂的抗性及其在杂种优势利用中的应用策略的探讨. 杂交水稻, 1997,12(5):1-3.
[9]   Xiao G Y . The view of crop herbicide resistance for heterosis utilization. Hybrid Rice, 1997,12(5):1-3.
[10]   Chen H, Lin Y J, Zhang Q F . Review and prospect of transgenic rice research. Science Bulletin, 2009,54(22):4049-4068.
doi: 10.16288/j.yczz.18-213 pmid: 30369468
[11]   Fujimoto H, Itoh K, Yamamoto M , et al. Insect-resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Biocontrol Science & Technology, 1993,11(10):1151-1155.
doi: 10.3390/md17120695 pmid: 31835449
[12]   Datta K, Vasquez A, Jumin T , et al. Constitutive and tissue-specific differential expression of the cry1A(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical and Applied Genetics, 1998,97(1-2):20-30.
doi: 10.1007/s001220050862
[13]   Zheng X S, Yang Y J, Xu H X , et al. Resistance performances of transgenic Bt rice lines T2A-1 and T1c-19 against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Economic Entomology, 2011,104(5):1730-1735.
doi: 10.1603/EC10389
[14]   Zaidi M A, Ye G Y, Yao H W , et al. Transgenic rice plants expressing a modified cry1Ca1 gene are resistant to Spodoptera litura and Chilo suppressalis. Molecular Biotechnology, 2009,43(3):232-242.
doi: 10.1007/s12033-009-9201-9
[15]   邓力华, 邓晓湘, 魏岁军 , 等. 抗虫抗除草剂转基因水稻B1C893的获得与鉴定. 杂交水稻, 2014,29(1):67-75.
[15]   Deng L H, Deng X X, Wei S J , et al. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice, 2014,29(1):67-66.
[16]   Hu W B, Deng X Y, Deng X X , et al. Characteristic analysis of tetra-resistant genetically modified rice. Journal of Integrative Agriculture, 2018,17(3):493-506.
doi: 10.1016/S2095-3119(17)61722-2
[17]   钟其全, 廖翠猛, 盘毅 , 等. 广适性高产两系杂交中稻新组合C两优608. 杂交水稻, 2011,26(4):79-81.
[17]   Zhong Q Q, Liao C M, Pan Y , et al. C liangyou 608, a new two-line medium hybrid rice combination with high yield and wide adaptability. Hybrid Rice, 2011,26(4):79-81.
[18]   Toki S, Hara N, Ono K , et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006,47(6):969-976.
doi: 10.1111/j.1365-313X.2006.02836.x pmid: 16961734
[19]   Lin Y J, Zhang Q F . Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports, 2005,23(8):540-547.
doi: 10.1007/s00299-004-0843-6
[20]   Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[21]   Yang Z, Chen H, Tang W , et al. Development and characterization of transgenic rice expressing two Bacillus thuringiensis genes. Pest Management Science, 2011,67(4):414-422.
doi: 10.1002/ps.2079
[22]   韩龙植, 魏兴华, 曹桂兰 , 等. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 66-69.
[22]   Han L Z, Wei X H, Cao G L , et al. Descriptors and data standard for rice. Beijing: China Agricultural Press, 2006: 66-69.
[23]   黄大年, 李敬阳, 章善庆 . 用抗除草剂基因快速检测和提高杂交稻纯度的新技术. 科学通报, 1998,43(1):67-70.
[23]   Huang D N, Li J Y, Zhang S Q . A new technology for rapid detection of herbicide resistance genes and improving purity of hybrid rice. Chinese Science Bulletin, 1998,43(1):67-70.
[24]   熊绪让, 唐俐, 邓晓湘 , 等. 抗除草剂两系杂交水稻香125S/Bar68-1栽培试验初报. 杂交水稻, 2004,19(5) : 41-43.
[24]   Xiong X R, Tang L, Deng X X , et al. A Preliminary report on the experiments of herbicide-resistant two-line hybrid rice xiang 125S/Bar68-1. Hybrid Rice, 2004,19(5) : 41-43.
[25]   Zhao T, Lin C Y, Shen Z C . Development of transgenic glyphosate-resistant rice with G6 gene encoding 5 enolpyruvylshikimate-3-phosphate synthase. Agricultural Sciences in China, 2011,10(9):1307-1312.
doi: 10.1016/S1671-2927(11)60123-5
[26]   赵艳, 邓春泉, 邓丽蝶 . 洁净DNA转化获得2mG2-epsps基因单拷贝整合的抗草甘膦水稻. 中国水稻科学, 2014,28(1):15-22.
doi: 10.3969/j.issn.10017216.2014.01.003
[26]   Zhao Y, Deng C Q, Deng L D . Generation of glyphosate-resistant transgenic rice harboring single copy of 2mG2-epsps gene by clean DNA transformation. Chinese Journal of Rice Science, 2014,28(1):15-22.
doi: 10.3969/j.issn.10017216.2014.01.003
[27]   Chhapekar S, Raghavendrarao S, Pavan G , et al. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS, confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Reports, 2015,34(5):721-731.
doi: 10.1007/s00299-014-1732-2 pmid: 25537885
[28]   Oono K . Putative homologous mutations in regenerated plants of rice. Molecular and General Genetics, 1985,198(3):377-384.
doi: 10.1007/BF00332926
[29]   Bregitzer P, Dahleen L S, Neate S , et al. A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Science, 2008,48(2):471-479.
doi: 10.2135/cropsci2007.06.0370
[1] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[2] QI Jia-long, GAO Rui-yu, JIN Shu-mei, GAO Fu-lan, YANG Xu, MA Yan-bing, LIU Cun-bao. Expression and Identification of Varicella-Zoster Virus Glycoprotein E and Immunogenicity Assay[J]. China Biotechnology, 2019, 39(8): 17-24.
[3] DONG Wei-peng,ZHANG Shao-hua,XU Xiang,YAN Jiong. The Effect and Mechanism of Down-Regulated Fsp27 Gene Combined with Myricetin on Lipolysis of 3T3-L1 Adipocytes[J]. China Biotechnology, 2018, 38(12): 7-13.
[4] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[5] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[6] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[7] Zhi-juan JI,Yu-xiang ZENG,Yan LIAN,Chang-deng YANG. Research on High Yield Breeding of Super Early Indica Rice “Zhongzao 39”[J]. China Biotechnology, 2017, 37(12): 21-26.
[8] YANG Yan-ping, DONG Yu, YUAN Jian-xia, XING Ying. The Analysis for Development Trend of Molecular Breeding Technologies in Rice Based on Patentometrics[J]. China Biotechnology, 2016, 36(9): 110-118.
[9] WANG Yu guang, CAI Jin yang, MA Cai yun, HU Rui fa. Genetically Modified “Golden Rice”: Development and Challenge[J]. China Biotechnology, 2016, 36(11): 116-121.
[10] CHI Pei-juan, WU Ming. Competitive Situation Analysis of Transgenic Rice Subject[J]. China Biotechnology, 2015, 35(6): 116-123.
[11] YANG Shuo, HAO Yu-jie, LAN Jin-ping, WEI Han-fu, WEI Jian, RONG Rui-juan, WU Peng-cheng, LIU Guo-zhen, YIN Chang-cheng, LI Li-yun. HPT Protein Detection and Expression Pattern in Transgenic Rice[J]. China Biotechnology, 2015, 35(6): 61-67.
[12] LI Hui, ZUO Qin-yue, LUO Ke, MO Bang-hui, ZHANG Guo-lin, WEN Xing-che, YANG Qiong, YU Mao-qun, WANG Song-hu, CHEN Bin, CHEN Li, CHEN Ming-cai, TU Sheng-bin. Transagriculture:A Discussion on Developing Intelligent Rice Breeding Robot[J]. China Biotechnology, 2014, 34(5): 116-121.
[13] CAI Jing-jing, DUAN Xue-hui, XIE Liang, ZHENG Xi-fang, SHEN Jiang-tao. Production of Cellulases by Solid State Fermentation with Three Strains Mixed[J]. China Biotechnology, 2013, 33(7): 57-63.
[14] SHEN Qiu-shuo, CHEN Feng, YE Qing, LI Tao, CHEN Xin-bo, ZHANG Xian-wen. Cloning and Transient Expression of the Three Stress-related Rice Promoters[J]. China Biotechnology, 2012, 32(11): 29-34.
[15] SHEN Qiu-shuo, CHEN Feng, YE Qing, LI Tao, CHEN Xin-bo, ZHANG Xian-wen. Cloning and Transient Expression of the Three Stress-related Rice Promoters[J]. China Biotechnology, 2012, 32(11): 29-34.