Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (10): 82-89    DOI: 10.13523/j.cb.20191010
    
The Progress on The Mechanism of Cell Penetrating Peptides Mediated- Cellular Delivery of Biomolecules
XIA Yan-mei1,YU Si-yuan2,YANG Han2,LI Ting-dong2,**()
1 National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences,Xiamen University, Xiamen 361102, China
2 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health,Xiamen University, Xiamen 361105, China
Download: HTML   PDF(1040KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Compared to traditional small molecular drugs, biomacromolecular drugs have high specificity, and become one of the most promising areas in drug development in the 21st century. However, the natural barrier of cell membranes has prevented many potential intracellular drug targets from drug development. Cell-penetrating peptides (CPP) are a class of short peptides with membrane-permeating functions, could efficiently carry biomacromolecules such as nucleic acids and proteins into the cytoplasm through cell membranes and perform their functions. CPP have many advantages such as high efficiency and low toxicity on the transportation of biomacromolecular drugs. The mechanism of CPP mediated-cellular delivery of cargo can be divided into direct entry and endocytosis depending on whether energy is dependent. Direct entry could be divided into four models according to the way of pore formation : barrel model,toroid model,carpet model and inverted micelle model.endocytosis could be divided into micropinocytosis,clathrin-mediated endocytosis,caveolin-mediated endocytosis,heparan sulfate proteoglycans-mediated endocytosis, neuropilin-1-mediated endocytosis. The type, concentration of CPP, physicochemical properties and molecular size of cargo affected the process of CPP entry, and then determine its mechanism. To summarize the mechanism of CPP-mediated biomacromolecular entry, which provides a basis for the study of more efficient and targeted CPP and promote its application in biology and medicine research.



Key wordsCell-penetrating peptide      Biomacromolecule      Cell-entry mechanism      Direct penetration      Endocytosis     
Received: 14 January 2019      Published: 12 November 2019
ZTFLH:  Q81  
Corresponding Authors: Ting-dong LI     E-mail: litingdong@xmu.edu.cn
Cite this article:

XIA Yan-mei,YU Si-yuan,YANG Han,LI Ting-dong. The Progress on The Mechanism of Cell Penetrating Peptides Mediated- Cellular Delivery of Biomolecules. China Biotechnology, 2019, 39(10): 82-89.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191010     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I10/82

分类 CPP 特点 氨基酸序列 文献
Cationic TAT HIV-1 transcriptional activator RKKRRQRRR [18]
R9 Synthetically created sequence of nine arginines RRRRRRRRR [8]
Amphipathic Penetratin Protein-derived form Drosophila antennapedia RQIKIWFQNRRMKWKK [19-21]
MPG Model amphipathic peptides GLAFLGFLGAAGSTMGAWSQPKKKRKV [22-23]
pVEC Murine vascular endothelial cadherin LLIILRRRIRKQAHAHSK [24]
Hydrophobic VP22 A component of a capsid of HSV-1 virus DAATATRGRSAASRPTE
RPRAPARSASRPRRVD
[25]
K-FGF Artifcial peptide containing the penetrating motif and locating the cell nucleus sequence AAVLLPVLLAAP [16]
Table 1 Examples of cell penetrating peptides
Fig.1 Schematic diagram of direct cell entry pathway of cell penetrating peptide
Fig.2 Schematic diagram of endocytic pathway of cell penetrating peptide
[1]   Crommelin D J A, Storm G, Verrijk R , et al. Shifting paradigms: biopharmaceuticals versus low molecular weight drugs. Int J Pharm, 2003,266(1):3-16.
[2]   Milletti F . Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today, 2012,17(15-16):850-860.
doi: 10.1016/j.drudis.2012.03.002
[3]   Agyei D, Ahmed I, Akram Z , et al. Protein and peptide biopharmaceuticals: an overview. Protein & Peptide Letters, 2016,24(2):94-101.
[4]   Pescina S, Ostacolo C, Gomezmonterrey I M , et al. Cell penetrating peptides in ocular drug delivery: state of the art. Journal of Controlled Release, 2018,284:84-102.
[5]   Bolhassani A, Jafarzade B S, Mardani G . In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides, 2017,87:50-63.
[6]   Derouazi M, Walker P, Dietrich P Y . Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget, 2018,9(98):37252-37267.
[7]   Guidotti G, Brambilla L, Rossi D . Cell-penetrating peptides: from basic research to clinics. Trends in Pharmacological Sciences, 2017,38(4):406-424.
[8]   Kale A A, Torchilin V P . Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. Journal of Drug Targeting, 2007,15(7-8):538-545.
[9]   Maiolo J R, Ferrer M, Ottinger E A . Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta, 2005,1712(2):161-172.
[10]   Kale A A, Torchilin V P . “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. Journal of Liposome Research, 2007,17(3-4):197-203.
[11]   Pooga M, H?llbrink M, Zorko M , et al. Cell penetration by transportan. The FASEB Journal, 1998,12(1):67-77.
[12]   Séb astien D, Thomas P, Gudrun A H , et al. Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry, 2004,43(24):7698-7706.
[13]   Anna R M ,Séba stien D,Karidia K,, et al.Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PLoS One, 2011,6(10):e25924.
[14]   Nan Y H, Park I S, Hahm K S , et al. Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. Journal of Peptide Science, 2011,17(12):812-817.
doi: 10.1002/psc.1408
[15]   Pujals S, Giralt E . Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev, 2008,60(4):473-484.
[16]   Lindgren M, Rosenthalaizman K, Saar K , et al. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 2006,71(4):416-425.
doi: 10.1016/j.bcp.2005.10.048
[17]   Borrelli A, Tornesello A L, Tornesello M L , et al. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules, 2018,23(2):e295.
[18]   Green M, Ishino M, Loewenstein P M . Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell, 1989,58(1):215-223.
[19]   Farkhani S M, Valizadeh A, Karami H , et al. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014,57(7):78-94.
[20]   Koren E, Torchilin V P . Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine, 2012,18(7):385-393.
doi: 10.1016/j.molmed.2012.04.012
[21]   Dupont E, Prochiantz A, Joliot A . Penetratin story: an overview. Methods Mol Biol, 2011,683(5):21-29.
[22]   Richard J P, Melikov K, Vives E , et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. Journal of Biological Chemistry, 2003,278(1):585-590.
[23]   Oehlke J, Scheller A, Wiesner B , et al. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta, 1998,1414(1-2):127-139.
[24]   Deshayes S, Morris M C, Divita G , et al. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cellular & Molecular Life Sciences, 2005,62(16):1839-1849.
[25]   Nishi K, Saigo K . Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. Journal of Biological Chemistry, 2007,282(37):27503-27517.
[26]   Hirose H, Takeuchi T, Osakada H , et al. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Molecular Therapy, 2012,20(5):984-993.
doi: 10.1038/mt.2011.313
[27]   Zhu P, Jin L . Cell penetrating peptides: a promising tool for the cellular uptake of macromolecular drugs. Curr Protein Pept Sci, 2018,19(2):211-220.
[28]   Akahoshi A, Matsuura E, Ozeki E , et al. Enhanced cellular uptake of lactosomes using cell-penetrating peptides. Science & Technology of Advanced Materials, 2016,17(1):245-252.
[29]   Chen Y, Zhang W, Huang Y , et al. In vivo biodistribution and anti-tumor efficacy evaluation of doxorubicin and paclitaxel-loaded pluronic micelles decorated with c(RGDyK) peptide. PLoS One, 2016,11(3):e0149952.
[30]   Gagat M ,Zielińs ka W,Grzanka A. Cell-penetrating peptides and their utility in genome function modifications (Review). International Journal of Molecular Medicine, 2017,40(6):1615-1623.
[31]   Herce H D, Garcia A E, Litt J , et al. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophysical Journal, 2009,97(7):1917-1925.
doi: 10.1016/j.bpj.2009.05.066
[32]   Khadka D, Haynie D T . Protein and peptide-based electrospun nanofibers in medical biomaterials. Advances in Experimental Medicine & Biology, 2012,8(8):1242-1262.
[33]   Matsuzaki K, Yoneyama S O, Miyajima K . Transbilayer transport of ions and lipids coupled with mastoparan x translocation. Biochemistry, 1996,35(25):8450-8456.
[34]   Murray B, Pearson C S, Aranjo A , et al. Mechanism of Four de novo designed antimicrobial peptides. Journal of Biological Chemistry, 2016,291(49):25706-25715.
[35]   Thennarasu S, Tan A, Penumatchu R , et al. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophysical Journal, 2010,98(2):248-257.
[36]   Kauffman W B, Fuselier T, He J , et al. Mechanism matters: a taxonomy of cell penetrating peptides. Trends in Biochemical Sciences, 2015,40(12):749-764.
[37]   Wanjale M V ,Kumar G S V. Peptides as a therapeutic avenue for nanocarrier-aided targeting of glioma. Expert Opinion on Drug Delivery, 2017,14(6):811-824.
[38]   Varkouhi A K, Scholte M, Storm G , et al. Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2011,151(3):220-228.
doi: 10.1016/j.jconrel.2010.11.004
[39]   Grau M, Walker P R, Derouazi M . Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cellular & Molecular Life Sciences, 2018,75(16):2887-2896.
[40]   Koren E, Torchilin V P . Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine, 2012,18(7):385-393.
doi: 10.1016/j.molmed.2012.04.012
[41]   Mercer J, Helenius A . Virus entry by macropinocytosis. Nature Cell Biology, 2009,11(5):510-520.
[42]   Nakase I, Noguchi K, Aoki A , et al. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Scientific Reports, 2017,7(1):1-11.
[43]   Komin A, Russell L M, Hristova K A, et al.Peptide-based strategies for enhanced cell uptake,transcellular transport, circulation:Mechanisms and challenges. Adv Drug Deliv Rev, 2016,110-111:52-64.
[44]   Lorents A ,S??Lik P,Langel U, et al.Arginine-rich cell-penetrating peptides require nucleolin and cholesterol-poor subdomains for translocation across membranes. Bioconjug Chem, 2018,29(4):1168-1177.
[45]   Jones S W, Christison R, Bundell K , et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005,145(8):1093-1102.
[46]   Berg T . Clathrin-dependent endocytosis. Biochemical Journal, 2004,377(Pt 1):1-16.
[47]   Gestin M, Dowaidar M , Langel uptake mechanism of cell-penetrating peptides. Advances in Experimental Medicine & Biology, 2017,1030:255-264.
[48]   Doan N D, Myriam L, David V , et al. Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. Journal of Controlled Release, 2012,163(2):256-265.
doi: 10.1016/j.jconrel.2012.08.021
[49]   Medinakauwe L K . “Alternative” endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery? Advanced Drug Delivery Reviews, 2007,59(8):798-809.
[50]   Pelkmans L, Helenius A . Endocytosis via caveolae. Traffic, 2002,3(5):311-320.
[51]   Zhao X L, Chen B C, Han J C , et al. Delivery of cell-penetrating peptide-peptide nucleic acid conjugates by assembly on an oligonucleotide scaffold. Scientific Reports, 2015,5:1038-17640.
[52]   Choi Y S, David A E . Cell penetrating peptides and the mechanisms for intracellular entry. Current Pharmaceutical Biotechnology, 2014,15(3):192-199.
[53]   Nichols B J, Kenworthy A K, Polishchuk R S , et al. Rapid cycling of lipid raft markers between the cell surface and golgi complex. The Journal of Cell Biology, 2001,153(3):529-542.
[54]   André Ziegler, Seelig J . Interaction of the protein transduction domain of hiv-1 tat with heparan sulfate: binding mechanism and thermodynamic parameters. Biophysical Journal, 2004,86(1 Pt 1):254-263.
[55]   Poon G M, Gariépy J . Cell-surface proteoglycans as molecular portals for cationic peptide and polymer entry into cells. Biochemical Society Transactions, 2007,35(Pt 4):788-793.
[56]   Bernfield M, G?tte M ,Park P W ,et al.Functions of cell surface heparan sulfate proteoglycans. Annual Review of Biochemistry, 1999,68:729-777.
[57]   Nakase I, Takeuchi T, Tanaka G , et al. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Advanced Drug Delivery Reviews, 2008,60(5):598-607.
[58]   Gordts P L S M, Esko J D . Heparan sulfate proteoglycans fine-tune macrophage inflammation via IFN-β. Cytokine, 2015,72(1):118-119.
[59]   Merton B, Robert K, Masato K , et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annual Review of Cell Biology, 1992,8(8):365-393.
[60]   Naik R J, Chatterjee A, Ganguli M . Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013,1828(6):1484-1493.
[61]   Suzuki T, Futaki S, Niwa M , et al. Possible existence of common internalization mechanisms among arginine-rich peptides. Journal of Biological Chemistry, 2002,277(4):2437-2443.
[62]   Mai J C, Shen H, Watkins S C , et al. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. Journal of Biological Chemistry, 2002,277(33):30208-30218.
[63]   Nikmanesh M, Shi Z D, Tarbell J M . Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnology & Bioengineering, 2015,109(2):583-594.
[64]   Morelli P, Bartolami E, Sakai N , et al. Glycosylated cell-penetrating poly(disulfide)s: multifunctional cellular uptake at high solubility. Helvetica Chimica Acta, 2018,101(1):e1700266.
[65]   Pang H B, Braun G B, Ruoslahti E . Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. Science Advances, 2015,1(10):e1500821.
[66]   Skotland T, Iversen T G, Torgersen M L , et al. Cell-penetrating peptides: possibilities and challenges for drug delivery in vitro and in vivo. Molecules, 2015,20(7):13313-13323.
[67]   Duchardt F, Fotinmleczek M, Schwarz H , et al. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 2010,8(7):848-866.
[68]   Tseng Y L, Liu J J, Hong R L . Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Molecular Pharmacology, 2002,62(4):864-872.
[69]   Marty C, Meylan C, Schott H , et al. Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes. Cellular & Molecular Life Sciences, 2004,61(14):1785-1794.
[70]   Khalil I A, Kogure K, Futaki S , et al. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. Journal of Biological Chemistry, 2006,281(6):3544-3551.
[71]   Kim H Y, Yum S Y, Jang G , et al. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Scientific Reports, 2015,5:11719.
[72]   Kaplan I M, Wadia J S, Dowdy S F . Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of Controlled Release, 2005,102(1):247-253.
[73]   Lim S, Kim W J, Kim Y H , et al. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nature Communications, 2015,6:8244.
[1] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[2] ZHOU Zhong-ting, ZHANG Quan, WANG Sheng-tao, CAI Yin, NAKANISHI Hideki, YIN Jian. Polymeric Nanomicelles Conjugated with BODIPY-based Photosensitizers for Targeted Photodynamic Therapy[J]. China Biotechnology, 2017, 37(10): 33-41.
[3] GUO Zheng-rong, PENG Huan-yan, KANG Ji-wen, JIANG Hui-qing, SUN Dian-xing. Cell Penetrating Peptides: Research Progress of a Novel Non-viral Vectors[J]. China Biotechnology, 2016, 36(6): 100-106.
[4] . [J]. China Biotechnology, 1999, 19(1): 48-53,24.