Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (9): 103-107    DOI: 10.13523/j.cb.20190914
Orginal Article     
New Advances in the Application of CAR Cell Therapy in T Cell - acute Lymphoblastic Leukemia
CHEN Man,WANG Ai-xian,WU Xue-ying,ZHEN Jun-yi,GONG Mei-wei,GUO Ya,WANG Hui
Beijing Lu Dao-pei Hospital,Beijing 100176, China
Download: HTML   PDF(365KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Currently, cell therapy of Chimeric antigen receptors (CAR) has been widely used in the treatment of leukemia and lymphoma.CD19 and CD22 targeting CAR-T have shown significant efficacy in the treatment of recurrent and refractory acute B-lymphoblastic leukemia (RR-B-ALL) and other hematologic diseases. However, the progress is slow in the treatment of T-lineage tumors. This review introduces the current domestic and international use of CAR cell technology and CRISPR/Cas9 gene coding technology to design T-ALL CAR cell and the preliminary exploration of CAR cell immunotherapy in the treatment of T-lineage acute lymphoblastic leukaemia.



Key wordsCAR      Cellular immunotherapy      T-ALL      PTCL     
Received: 06 August 2019      Published: 20 September 2019
ZTFLH:  Q819  
Cite this article:

CHEN Man,WANG Ai-xian,WU Xue-ying,ZHEN Jun-yi,GONG Mei-wei,GUO Ya,WANG Hui. New Advances in the Application of CAR Cell Therapy in T Cell - acute Lymphoblastic Leukemia. China Biotechnology, 2019, 39(9): 103-107.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190914     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I9/103

[1]   Iacobucci I, Mullighan C G . Genetic basis of acute lymphoblastic leukemia. J Clin Oncol, 2017,35(9):975-983.
[2]   Marks D I, Paietta E M, Moorman A V , et al. T-cell acute lymphoblastic leukemia in adults:clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood, 2009,114(51):36-45.
[3]   Goldberg J M, Silverman L B, Levy D E , et al. Childhood T-cell acute lymphoblastic leukemia:the dana-farber cancer institute acute lymphoblastic leukemia consortium experience. J Clin Oncol, 2003,21(36):16-22.
[4]   Gardner R A, Finney O, Annesley C , et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 2017,129(25):3322-3331.
[5]   Fry T J, Shah N N, Orentas R J , et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med, 2018,24(1):20-28.
[6]   Mamonkin M, Rouce R H, Tashiro H , et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015,126(8):983-992.
[7]   Brentjens R J, Santos E, Nikhamin Y , et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res, 2007,13(18 Pt 1):5426-5435.
[8]   Maus M V, June C H . Making better chimeric antigen receptors for adoptive T-cell Therapy. Clin Cancer Res, 2016,22(8):1875-1884.
[9]   Gross G, Gorochov G, Waks T , et al. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplantation Proceedings, 1989,21(1):127-130.
[10]   Kleinstiver B P, Pattanayak V, Prew M S , et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016,529(7587):490-495.
[11]   Eyquem J, Mansilla-Soto J, Giavridis T , et al. Targeting a CAR to the TRAC locus with CRISPR Cas9 enhances tumour rejection. Nature, 2017,543(7643):113-117.
[12]   MacLeod D T, Antony J, Martin A J , et al. Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther, 2017,25(4):949-961.
[13]   Morvan M G, Lanier L L . NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer, 2016,16(1):7-19.
[14]   Li Y, Hermanson D, Moriarity B , et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell, 2018,23(2):181-192.
[15]   Bechan G, Lee D W, Zajonc D M , et al. Phage display generation of a novel human anti CD1a monoclonal antibody with potent cytolytic activity. Br J Haematol, 2012,159(3):299-310.
[16]   Consonni M, Dellabona P, Casorati G . Potential advantages of CD1 restricted T cell mmunotherapy in cancer. Mol Immunol, 2018,103(4):200-208.
[17]   Sánchez-Martínez, Matteo L Baroni . Fratricide-resistant CD1a-specific CAR T-cells for the treatment of cortical T cell acutelymphoblastic leukemia. Blood, 2019,133(21):2291-2304.
[18]   Went P, Agostinelli C ,Gallamini A,et al.Marker expression in peripheral T-cell lymphoma:a proposed clinical-pathologic prognostic score. J Clin Oncol, 2006,24(16):2472-2479.
[19]   Pui C H, Behm F G, Singh B , et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood, 1990,75(1):174-179.
[20]   Maciocia P M, Wawrzyniecka P A, Philip B , et al. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nature Medicine, 2017,23(12):1416-1423.
[21]   Onuoha S, Ferrari M, Bulek A , et al. Structure guided engineering of highly specific chimeric antigen receptors for the treatment of T cell lymphomas//2018 ASH Annual Meeting & Exposition, San Diego, CA , 2018.
[22]   Went P, Agostinelli C, Gallamini A , et al. Marker expression in peripheral T-cell lymphoma:a proposed clinical-pathologic prognostic score. J Clin Oncol, 2006,24(16):2472-2479.
[23]   Png Y T, Vinanica N, Kamiya T , et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv, 2017,1(25):2348-2360.
[24]   Diogo Gomes-Silva, Erden A, Pinar A A , et al. CD7 CAR T Cells for the Therapy of Acute Myeloid Leukemia. Molecular Therapy, 2019,27(1):272-280.
[25]   Diogo Gomes-Silva, Madhuwanti S, Sandhya S , et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell alignancies. Blood, 2017,130(3):285-296.
[26]   Cooper M L, Choi J, Staser K , et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia, 2018,32(9):1970-1983.
[27]   You F T, Wang Y Y, Jiang L C , et al. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res, 2019,9(1):64-78.
[28]   Chang Y H, Connolly J, Shimasaki N , et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res, 2013,73(6):1777-1786.
[29]   Bei R, Mizejewski G , et al. Alpha fetoprotein is more than a hepatocellular cancer biomarker: from spontaneous immune response in cancer patientsto the development of an AFP-based cancer vaccine. Current Molecular Medicine, 2011,11(7):564-581.
[30]   Ruella M, Xu J, Barrett D M , et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med, 2018,24(10):1499-1503.
[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] SUN Li-ping,XU Wan,LI Meng-wei,ZENG Ru,WENG Jian. Advances of the Physiochemical Properties of Sporopollenin and Its Biomedical Applications[J]. China Biotechnology, 2021, 41(9): 92-100.
[3] LI Jia-xin,ZHANG Zheng,LIU He,YANG Qing,LV Cheng-zhi,YANG Jun. Preparation and Drug Release Properties of Keratin-loaded Nanoparticles[J]. China Biotechnology, 2021, 41(8): 8-16.
[4] KANG Ke-ren,YUAN Qiang,LIANG Fei-min,WU Li-xian. Synthesis of Benzfetamine Artificial Antigen[J]. China Biotechnology, 2021, 41(7): 58-65.
[5] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[6] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[7] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[8] ZHU Hang-zhi,JIANG Shan,CHEN Dan,LIU Peng-yang,WAN Xia. Improving the Biosynthesis of β-Carotene in Yarrowia lipolytica by Introducing an Artificial Isopentenol Utilization Pathway[J]. China Biotechnology, 2021, 41(4): 37-46.
[9] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[10] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[11] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[12] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[13] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[14] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[15] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.