Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (9): 91-97    DOI: 10.13523/j.cb.20190912
Orginal Article     
The Genetics of Mixed-phenotype Acute Leukemia
WANG Qian,CHEN Su-ning()
The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou 215006, China
Download: HTML   PDF(385KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mixed-phenotype acute leukemia (MPAL) is a rare type of acute leukemia, in which the blasts express lineage specific antigens of more than 1 lineage. The incidence of MPAL comprises 2% to 5% of all cases of acute leukemia. Clonal chromosomal abnormalities can be detected in about 59% to 91% of MPAL patients, such as t(9;22)(q34;q11)/BCR-ABL1 and t(v;11q23)/KMT2A-rearrangment, which play a prominent role in the diagnosis and prognosis of these disorders. More recently, molecular approaches have been useful in further characterizing this group of diseases, such as whole genome sequencing, whole exome sequencing and next generation sequencing. ZNF384 fusions are common in B/My MPAL and WT1 mutations are common in T/My MPAL, which provide potential biological insights and may have clinical implications for this disease. This review aims to provide a brief overview of the recent advances in MPAL genetics.



Key wordsMixed-phenotype acute leukemia      Chromosomal translocation      Gene mutation     
Received: 19 August 2019      Published: 20 September 2019
ZTFLH:  Q343  
Corresponding Authors: Su-ning CHEN     E-mail: chensuning@sina.com
Cite this article:

WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia. China Biotechnology, 2019, 39(9): 91-97.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190912     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I9/91

Points B lineage T lineage Myeloid
2 CD79
cCD22
CD3
T cell receptor
Myeloperoxidase
1 CD19
CD10
CD20
CD2
CD5
CD8
CD10
CD13
CD33
CD65
CD117
0.5 TdT
CD24
TdT
CD1a
CD7
CD14
CD15a
CD64
Table1 EGIL scoring system for BAL
Lineage Marker
Myeloid lineage Myeloperoxidase
or
Monocytic differentiation (at least 2 of the following: non-specific esterase, CD11c, CD14, CD64, lysozyme)
B lineage Strong CD19 with at least 1 of the following strongly expressed: CD79a, cytoplasmic CD22, CD10
or
Weak CD19 with at least 2 of the following strongly expressed: CD79a, cytoplasmic CD22, CD10
T lineage Cytoplasmic CD3
or
Surface CD3
Table 2 2008/2016 WHO classification for MPAL
[1]   Vardiman J W, Thiele J, Arber D A , et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood, 2009,114(5):937-951.
[2]   Arber D A, Orazi A, Hasserjian R , et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016,127(20):2391-2405.
[3]   Matutes E, Pickl W F, Van’t Veer M , et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood, 2011,117(11):3163-3171.
doi: 10.1182/blood-2010-10-314682
[4]   Porwit A, Bene M C . Acute leukemias of ambiguous origin. Am J Clin Pathol, 2015,144(3):361-376.
[5]   Munker R, Brazauskas R, Wang H L , et al. Allogeneic hematopoietic cell transplantation for patients with mixed phenotype acute leukemia. Biol Blood Marrow Transplant, 2016,22(6):1024-1029.
[6]   Weinberg O K, Arber D A . Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia, 2010,24(11):1844-1851.
[7]   Yan L, Ping N, Zhu M , et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica, 2012,97(11):1708-1712.
[8]   van den Ancker W, Terwijn M, Westers T M , et al. Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO2008 classification. Leukemia, 2010,24(7):1392-1396.
[9]   Atfy M ,Al Azizi N M,Elnaggar A M. Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: and its role in their outcome. Leuk Res, 2011,35(10):1339-1344.
[10]   Bhatia P, Binota J, Varma N , et al. A study on the expression of BCR-ABL transcript in mixed phenotype acute leukemia (MPAL) cases using the reverse transcriptase polymerase reaction assay (RT-PCR) and its correlation with hematological remission status post Initial induction therapy. Mediterr J Hematol Infect Dis, 2012,4(1):e2012024.
[11]   Gerr H, Zimmermann M, Schrappe M , et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol, 2010,149(1):84-92.
[12]   Arana-Trejo R M, Ruiz Sanchez E, Ignacio-Ibarra G , et al. BCR/ABL p210, p190 and p230 fusion genes in 250 Mexican patients with chronic myeloid leukaemia (CML). Clin Lab Haematol, 2002,24(3):145-150.
[13]   Moorman A V, Harrison C J, Buck G A , et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood, 2007,109(8):3189-3197.
[14]   Kihara R, Nagata Y, Kiyoi H , et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia, 2014,28(8):1586-1595.
doi: 10.1038/leu.2014.55
[15]   Ley T J, Miller C, Ding L , et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013,368(22):2059-2074.
[16]   Soupir C P, Vergilio J A, Dal Cin P , et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol, 2007,127(4):642-650.
[17]   Wolach O, Stone R M . How I treat mixed-phenotype acute leukemia. Blood, 2015,125(16):2477-2485.
[18]   Wang Y, Gu M, Mi Y , et al. Clinical characteristics and outcomes of mixed phenotype acute leukemia with Philadelphia chromosome positive and/or bcr-abl positive in adult. Int J Hematol, 2011,94(6):552-555.
doi: 10.1007/s12185-011-0953-1
[19]   Al-Seraihy A S, Owaidah T M, Ayas M , et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica, 2009,94(12):1682-1690.
[20]   Owaidah T M, Al Beihany A, Iqbal M A , et al. Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system. Leukemia, 2006,20(4):620-626.
[21]   Shimizu H, Saitoh T, Machida S , et al. Allogeneic hematopoietic stem cell transplantation for adult patients with mixed phenotype acute leukemia: results of a matched-pair analysis. Eur J Haematol, 2015,95(5):455-460.
[22]   Zhang Y, Wu D, Sun A , et al. Clinical characteristics, biological profile, and outcome of biphenotypic acute leukemia: a case series. Acta Haematol, 2011,125(4):210-218.
[23]   Heesch S, Neumann M, Schwartz S , et al. Acute leukemias of ambiguous lineage in adults: molecular and clinical characterization. Ann Hematol, 2013,92(6):747-758.
doi: 10.1007/s00277-013-1694-4
[24]   De Braekeleer E, Meyer C, Douet-Guilbert N , et al. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol, 2011,5(6):555-563.
doi: 10.1016/j.molonc.2011.08.003
[25]   Li Z, Luo R T, Mi S , et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res, 2009,69(3):1109-1116.
[26]   Wang Q F, Wu G, Mi S , et al. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood, 2011,117(25):6895-6905.
doi: 10.1182/blood-2010-12-324699
[27]   Balgobind B V, Raimondi S C, Harbott J , et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood, 2009,114(12):2489-2496.
[28]   Tamai H, Yamaguchi H, Hamaguchi H , et al. Clinical features of adult acute leukemia with 11q23 abnormalities in Japan: a co-operative multicenter study. Int J Hematol, 2008,87(2):195-202.
doi: 10.1007/s12185-008-0034-2
[29]   Manola K N . Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol, 2013,163(1):24-39.
[30]   Rubnitz J E, Onciu M, Pounds S , et al. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood, 2009,113(21):5083-5089.
[31]   Xu X Q, Wang J M, Lu S Q , et al. Clinical and biological characteristics of adult biphenotypic acute leukemia in comparison with that of acute myeloid leukemia and acute lymphoblastic leukemia: a case series of a Chinese population. Haematologica, 2009,94(7):919-927.
[32]   Lou Z, Zhang C C, Tirado C A , et al. Infantile mixed phenotype acute leukemia (bilineal and biphenotypic) with t(10;11)(p12;q23);MLL-MLLT10. Leuk Res, 2010,34(8):1107-1109.
[33]   Daigle S R, Olhava E J, Therkelsen C A , et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood, 2013,122(6):1017-1025.
doi: 10.1182/blood-2013-04-497644
[34]   Dawson M A, Prinjha R K, Dittmann A , et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011,478(7370):529-533.
[35]   Takahashi K, Wang F, Morita K , et al. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun, 2018,9(1):2670.
[36]   Alexander T B, Gu Z, Iacobucci I , et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018,562(7727):373-379.
[37]   Quesada A E, Hu Z, Routbort M J , et al. Mixed phenotype acute leukemia contains heterogeneous genetic mutations by next-generation sequencing. Oncotarget, 2018,9(9):8441-8449.
[38]   Eckstein O S, Wang L, Punia J N , et al. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Exp Hematol, 2016,44(8):740-744.
[39]   Noronha E P ,Marques L V C,Andrade F G , et al. T-lymphoid/myeloid mixed phenotype acute leukemia and early T-cell precursor lymphoblastic leukemia similarities with NOTCH1 mutation as a good prognostic factor. Cancer Manag Res, 2019,11:3933-3943.
[40]   Hou H A, Kuo Y Y, Liu C Y , et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood, 2012,119(2):559-568.
doi: 10.1182/blood-2011-07-369934
[41]   Xiao W, Bharadwaj M, Levine M , et al. PHF6 and DNMT3A mutations are enriched in distinct subgroups of mixed phenotype acute leukemia with T-lineage differentiation. Blood Adv, 2018,2(23):3526-3539.
[42]   Alexander T B, Gu Z, Choi J K , et al. Genomic landscape of pediatric mixed phenotype acute leukemia. Blood, 2016,128:454.
[43]   Neumann M, Vosberg S, Schlee C , et al. Mutational spectrum of adult T-ALL. Oncotarget, 2015,6(5):2754-2766.
[44]   Van Vlierberghe P, Patel J, Abdel-Wahab O , et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia, 2011,25(1):130-134.
doi: 10.1038/leu.2010.247
[45]   Wang Q, Qiu H, Jiang H , et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica, 2011,96(12):1808-1814.
doi: 10.3324/haematol.2011.043083
[46]   Van Vlierberghe P, Palomero T, Khiabanian H , et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet, 2010,42(4):338-342.
[47]   Sood R, Kamikubo Y , Liu P Role of RUNX1 in hematological malignancies. Blood, 2017,129(15):2070-2082.
[48]   Ohgami R S, Ma L, Merker J D , et al. Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol, 2015,28(5):706-714.
[49]   Zhang L, Padron E, Lancet J . The molecular basis and clinical significance of genetic mutations identified in myelodysplastic syndromes. Leuk Res, 2015,39(1):6-17.
[1] Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG. Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology[J]. China Biotechnology, 2018, 38(6): 52-57.
[2] CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases[J]. China Biotechnology, 2016, 36(1): 76-85.
[3] TANG He-jing, TANG Zhao-yong, LIU Long-xing, ZHANG Xiao-mei, WANG Yi-ting, FANG Liao-qiong. Effect of siRNA Combined-silencing MMP-9 and FAK on Invasion and Migration of Mouse Melanoma Highly Metastatic Cells B16F10 in vitro[J]. China Biotechnology, 2014, 34(9): 40-47.
[4] FANG Rui, GUO Qiang, DU Jun. Construction and Verification of an Inducible EMT Model in Mouse Melanoma Stably Overexpressing Snail[J]. China Biotechnology, 2013, 33(7): 1-7.
[5] SUN Ying, GE Feng, LIU Di-qiu, RAO Jian. Effects of CAS Silencing by RNAi on the Content of Saponins in Panax notoginseng[J]. China Biotechnology, 2013, 33(3): 80-85.