Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (8): 32-39    DOI: 10.13523/j.cb.20190805
    
Functional Analysis of the AmNAC3 Transcription Factor Gene from Ammopiptanthus mongolicus in Drought and Cold Resistances
REN Mei-yan,TANG Kuan-gang,XUE Min,GUO Hui-qin,WANG Mao-yan()
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
Download: HTML   PDF(1589KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Ammopiptanthus mongolicus is a plant with very strong tolerance to abiotic stresses.To investigate whether AmNAC3,a transcription factor gene from this species,plays roles in tolerating cold and drought, first performed the expression analysis of this gene using semi-quantitative RT-PCR.The results showed that in the seedlings cultivated in normal growth conditions, AmNAC3 had a clear basic expression and the expression level was obviously up-regulated under the drought treatment.In contrast,the expression level of AmNAC3 was weakly up-regulated under the cold stress. Then acquired the 5'-terminal sequence of AmNAC3 by 5'RACE and its full-length cDNA sequence.The whole coding region (846bp) cDNA was cloned by RT-PCR and was inserted into plant expression vector.Transgenic Arabidopsis plants of AmNAC3 was obtained by Agrobacterium mediated genetic transformation.Further analyses showed that the transgenic and wild type plants presented similar drought and cold resistance.However, the water loss rate and stomatal aperture of the detached leaves of transgenic lines were greater than those of wild type.Moreover,the transcript levels of ABI1 and ABI2, two genes related to stomatal closure,were down-regulated in transgenic seedlings.These results indicate that AmNAC3 may primarily function in the response to drought stress and regulation of stomatal closure and leaf water retention but play less role in coping with low temperature stress.



Key wordsAmmopiptanthus mongolicus      NAC      Water loss of leaves      Stomatal aperture     
Received: 29 January 2019      Published: 18 September 2019
ZTFLH:  Q819  
Corresponding Authors: Mao-yan WANG     E-mail: wangmaoyan@163.com
Cite this article:

REN Mei-yan,TANG Kuan-gang,XUE Min,GUO Hui-qin,WANG Mao-yan. Functional Analysis of the AmNAC3 Transcription Factor Gene from Ammopiptanthus mongolicus in Drought and Cold Resistances. China Biotechnology, 2019, 39(8): 32-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190805     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I8/32

Fig.1 Water contents in the soil and seedlings and AmNAC3 expression levels under the drought and cold stresses (a) Relative water contents in soil and seedlings during the drought treatment period (b), (c) The expression levels of AmNAC3 under the drought and cold stress treatments
Fig.2 Identification patterns of the coding region, expression vector construction and RT-PCR detection of transgenic lines of AmNAC3
Fig.3 Water loss of detached leaves of the AmNAC3 transgenic Arabidopsis (a) Phenotypes of the detached leaves during dehydration for 0 to 7h (b) Water loss rates of the detached leaves
Fig.4 Stomatal aperture and ABI expression levels of AmNAC3 transgenic Arabidopsis leaves (a) Stomata observation of the leaves (b) Measurement of stomatal aperture (c) ABI expression levels
[1]   王凯悦, 陈芳泉, 黄五星 . 植物干旱胁迫响应机制研究进展. 中国农业科技导报, 2019,21(2):19-20.
[1]   Wang K Y, Chen F Q, Huang W X . Research progress on drought stress response mechanism in plants. Journal of Agricultural Science and Technology, 2019,21(2):19-20.
[2]   朱虹, 林清芳, 王凯 . 植物温和干旱胁迫的研究进展. 分子植物育种, 2018,16(22):7521-7526.
[2]   Zhu H, Lin Q F, Wang K . The research progress on plant mild drought stress. Molecular Plant Breeding, 2018,16(22):7521-7526.
[3]   吴耀荣, 谢旗 . ABA与植物胁迫抗性. 植物学通报, 2006,23(5):511-518.
[3]   Wu Y R, Xie Q . ABA and plant stress response. Chinese Bulletin of Botany, 2006,23(5):511-518.
[4]   肖玉洁, 李泽明, 易鹏飞 , 等. 转录因子参与植物低温胁迫响应调控机理的研究进展. 生物技术通报, 2018,34(12):1-9.
[4]   Xiao Y J, Li Z M, Yi P F , et al. Research progress on response mechanism of transcription factors involved in plant cold stress. Biotechnology Bulletin, 2018,34(12):1-9.
[5]   Nuruzzaman M, Manimekalai R, Sharoni A M , et al. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010,465(1-2):30-44
[6]   Le D T, Nisjiyama R, Watanabe Y , et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011,18(4):263-276.
doi: 10.1093/dnares/dsr015
[7]   Hu R, Qi G, Kong Y , et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol, 2010,10(1):145-178.
[8]   Olsen A N, Ernst H A, Leggio L L , et al. NAC transcription factors:structurally distinct,functionally diverse. Trends Plant Sci, 2005,10(2):79-87.
[9]   Ooka H, Satoh K, Doi K , et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003,10(6): 239-247.
[10]   Chen X, Wang Y F, Lv B , et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol, 2014,55(3):604-619.
doi: 10.1093/pcp/pct204
[11]   Xie L N, Chen M, Min D H , et al. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. Journal of Integrative Agriculture, 2017,16(3):559-571.
[12]   Tran L S P, Nakashima K, Sakuma Y , et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004,16(9):2481-2498.
[13]   Jiang X Q, Zhang C H, Lu P T , et al. RhNAC3,a stress-associated NAC transcription factor,has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnology Journal, 2014,12(1):38-48.
doi: 10.1111/pbi.12114
[14]   Christianson J A, Dennis E S, Llewellyn D J , et al. ATAF NAC transcription factors:regulators of plant stress signaling. Plant Signaling & Behavior, 2010,5(4):428-432.
[15]   Jensena M K, Lindemosea S, de Masib F , et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 2013,29(3):321-327.
[16]   Wu Y R, Deng Z Y, Lai J B , et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 2009,19(11):1279-1290.
[17]   Song S Y, Chen Y, Chen J , et al. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 2011,234(2), 331-345.
doi: 10.1007/s00425-011-1403-2
[18]   Nakashima K, Tran L S, Van Nguyen D , et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007,51(4):617-630.
[19]   Liu H, Zhou Y, Li H , et al. Molecular and functional characterization of ShNAC1,a NAC transcription factor from Solanum habrochaites. Plant Sci, 2018,271(17):9-19.
[20]   Zhang K, Gan S S . An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiology, 2012,158(2):961-969.
doi: 10.1104/pp.111.190876
[21]   林清芳, 王茅雁, 刘佳杰 , 等. 沙冬青细胞与分子生物学研究进展. 植物遗传资源学报, 2010,11(6):793-797.
[21]   Lin Q F, Wang M Y, Liu J J , et al. Research progress of cell and molecular biology of Ammopiptanthus. Journal of Plant Genetic Resource, 2010,11(6):793-797.
[22]   庞新跃, 任美艳, 武雅琪 , 等. 蒙古沙冬青AmNAC1AmNAC2的表达分析与植物表达载体构建. 分子植物育种, 2018,16(13):4285-4293.
[22]   Pang X Y, Ren M Y, Wu Y Q , et al. Expression analysis and plant expression vector construction of AmNAC1 and AmNAC2 from Ammopiptanthus mongolicus. Molecular Plant Breeding, 2018,16(13):4285-4293.
[23]   唐宽刚, 任美艳, 张文君 , 等. 沙冬青AmNAC6基因的克隆与功能初步分析. 植物科学学报, 2018,36(5):705-712.
[23]   Tang K G, Ren M Y, Zhang W J , et al. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus. Plant Science Journal, 2018,36(5):705-712.
[24]   Wu Y, Wei W, Pang X , et al. Comparative transcriptome profiling of a desert evergreen shrub,Ammopiptanthus mongolicus,in response to drought and cold stresses. BMC Genomics. 2014,15(1):671.
[25]   刘晓静, 陈国庆, 王良 , 等. 不同生育时期冬小麦叶片相对含水量高光谱监测. 麦类作物学报, 2018,38(7):854-862.
[25]   Liu X J, Chen G Q, Wang L , et al. Monitoring leaf relative water conten of winter wheat based on hyperspectral index at different growth stages. Journal of Triticeae Crops, 2018,38(7):854-862.
[26]   林清芳, 王存芳, 赵欢欢 , 等. 蒙古沙冬青总RNA提取与mRNA分离方法的研究. 植物遗传资源学报, 2011,12(3):460-463.
[26]   Lin Q F, Wang C F, Zhao H H , et al. Methods for total RNA extraction and mRNA isolation from Ammopiptanthus mongolicus. Journal of Plant Genetic Resources, 2011,12(3):460-463.
[27]   Thomas D S, Kenneth J L . Analyzing real-time PCR data by the comparative Ct method. Nature Protocols, 2008,3(6):1101-1108.
[28]   任美艳, 杨晓茹, 殷玉梅 , 等. 沙冬青RING型锌指蛋白AmRFP1的克隆与功能初步分析. 西北植物学报, 2017,37(12):2317-2324.
[28]   Ren M Y, Yang X R, Yin Y M , et al. Cloning and preliminary functional analysis of AmRFP1,a RING-type zinc finger protein gene from Ammopiptanthus mongolicus. Acta Bot Boreal Occident Sin, 2017,37(12):2317-2324.
[29]   姜子颖 . 低温与干旱胁迫对小叶朴幼苗生理生化指标的影响. 泰安:山东农业大学, 2018.
[29]   Jiang Z Y . Effects of low temperature and drought stress on physiological and biochemical indexes of Celtis bungeana seedling. Taian:Shandong Agriculture University, 2018.
[30]   Pei Z M, Kuchitsu K, Ward G M , et al. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. The Plant Cell Online, 1997,9(3):409-423.
[1] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[2] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.
[3] LI Ting, SUN Jing, ZHAO Xiang-zhe, LIAN Li-qiang, XIE Fu-qiang. Preparation and Characterization Testing of Bone Morphogenetic Protein2/ Pearl Powder/Chitosan Porous Scaffolds[J]. China Biotechnology, 2015, 35(11): 1-6.
[4] GUO Yang, LIN Hua. The New Development of Japanese Encephalitis Vaccine and Vaccine Research[J]. China Biotechnology, 2015, 35(10): 66-71.
[5] SHAO Zi-jing, JIANG Nan, YAN Hua-li, ZHAN Cheng, XU Ying, CHEN Fang. The Soluble Prokaryotic Expressed Ribosome-inactivating Protein Curcin2 with Anti-fungal Activity from Jatropha curcas L.[J]. China Biotechnology, 2013, 33(7): 43-49.
[6] XU Xiao-jing, AN Hui-ling, CHEN Ning-mei, YANG Jing, ZHOU Yi-jun. Expression and Characterization of ThMSD from Thellungiella halophila in Escherichia coli[J]. China Biotechnology, 2013, 33(4): 74-79.
[7] ZHANG Biao, TONG Lin, YI Shan, ZHANG Guang-ming, LI Hong-jun, SUN Mao-sheng, CHEN Dong. Effects of Humoral Immune Response Vaccinated by Sequential Inactivated-live Rotavirus Vaccine[J]. China Biotechnology, 2013, 33(2): 14-20.
[8] CHEN Jia, JIN Ming-fei, TAN Yu-jing, LIU Ying, TIAN Pei-lin, CHANG Zhong-yi, BU Jian-guo. Enhancement of Transglutaminase Production in Streptoverticillium mobaraensis as Achieved by Treatment with NaCl[J]. China Biotechnology, 2013, 33(2): 54-58.
[9] ZHOU Gang, YANG Jun, YANG Qing. Cloning and Expression of O-linked β-N-acetylglucosaminidase Gene from Ostrinia furnacalis[J]. China Biotechnology, 2012, 32(05): 36-42.
[10] ZHU Qiang, XIA Yan-qiu, CHEN Ai-qin, XIONG Xiao-hui. Optimization of Ganodetma lucidum-Astragalus membranaceus Polysaccharide Solid Fermentation Condition by Response Surface Analysis[J]. China Biotechnology, 2011, 31(12): 99-103.
[11] JIA Qin-mei, WU Jin-yuan, YI Shan, ZHANG Guang-ming, GAO Yan, YANG Xing, ZHAO Xiao-nan, SUN Mao-sheng, LI Hong-jun. Preparation and Immunogenicity of a Scalable Inactivated Vaccine, Strain ZTR-5 in Mice[J]. China Biotechnology, 2011, 31(11): 6-10.
[12] ZHANG Bo, LI Tie-min, YANG Zhi-yong, HU Yong-fei, LI Yu. Overproduction of Glutamic Acid in Corynebacterium glutamicum with H+-atp Inactivation[J]. China Biotechnology, 2011, 31(01): 35-39.
[13] SHU Jiang, JIA Yan-Qiu, DONG Ke-Ke, YANG Cong-Fa, HONG Zhi-Jun. Optimization of Ganoderma Lucidum Medicinal Solid Fermentation Medium by Response Surface Test[J]. China Biotechnology, 2010, 30(09): 75-79.
[14] . overexpression of α-synuclein gene caused dopaminergic neuron damage in substantia nigra of rats[J]. China Biotechnology, 2009, 29(01): 1-6.
[15] Zhong-Hua WANG Wei-Duo CHEN. Capsid-targeted viral inactivation: a new antiviral strategy[J]. China Biotechnology, 2007, 27(3): 88-92.