Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 78-83    DOI: 10.13523/j.cb.20190611
    
Research Progress of Relationship between Exosomes and Autophagosomes
Yan LIU1,2,Peng DAI2,Yun-feng ZHU1,3,**()
1 College of Life Sciences and Bioengineering,Beijing Jiaotong University,Beijing 100044,China
2 Henan Province OriginBio Biotechnology Co. Ltd., Zhengzhou 450000, China
3 The Key Laboratory of Tumor Center in PLA General Hospital, Beijing 100853, China
Download: HTML   PDF(488KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The eukaryotic intima system consists of intercellular membranous organelles, including the formation of exosomes and autophagy, which play an important role in stress response and maintenance of cell homeostasis. Exosomes are extracellular vesicles secreted into the body by multivesicular bodies containing contents of proteins and nuclear acids, while autophagy is a process of lysosomal-dependent degradation and recycling. There is a common molecular mechanism between the formation of exosomes and autophagy, and substantial interaction between them were founded.The formation of exosomes and the process of autophagy was reviewed, including the relationship between the two and lysosomes.



Key wordsAutophagy      Exosomes      Lysosomes      Extracellular vesicles     
Received: 13 November 2018      Published: 12 July 2019
ZTFLH:  Q28  
Corresponding Authors: Yun-feng ZHU     E-mail: zhuyf2004@163.com
Cite this article:

Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes. China Biotechnology, 2019, 39(6): 78-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190611     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/78

Fig. 1 The relationship between exosome and autophagosome
[1]   Pan B T, Johnstone R M . Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell, 1983,33(3):967-978.
doi: 10.1016/0092-8674(83)90040-5
[2]   Claude-Taupin A, Jia J, Mudd M , et al. Autophagy’s secret life: secretion instead of degradation. Essays Biochem, 2017,61(6):637-647.
doi: 10.1042/EBC20170024
[3]   Cadwell K, Debnath J . Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagyrelated proteins. J Cell Biol, 2018,217(3):813-822.
doi: 10.1083/jcb.201706157
[4]   Baixauli F, López-Otin C, Mittelbrunn M . Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol, 2014,5:403.
[5]   Ojha C R, Lapierre J, Rodriguez M , et al. Interplay between autophagy, exosomes and HIV-1 associated neurological disorders: new insights for diagnosis and therapeutic applications. Viruses, 2017,9(7):176.
doi: 10.3390/v9070176
[6]   Scott C C, Vacca F, Gruenberg J . Endosome maturation, transport and functions. Semin Cell Dev Biol, 2014,31:2-10.
doi: 10.1016/j.semcdb.2014.03.034
[7]   Hessvik N P, Llorente A . Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018,75(2):193-208.
doi: 10.1007/s00018-017-2595-9
[8]   Yáñez-Mó M, Siljander P R, Andreu Z , et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015,4(1):27066.
doi: 10.3402/jev.v4.27066
[9]   Hurley J H . ESCRTs are everywhere. EMBO J, 2015,34(19):2398-2407.
doi: 10.15252/embj.201592484
[10]   Colombo M, Moita C, van Niel G , et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013,126(Pt 24):5553-5565.
doi: 10.1242/jcs.128868
[11]   Trajkovic K, Hsu C, Chiantia S , et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008,319(5867):1244-1247.
doi: 10.1126/science.1153124
[12]   Xu J, Camfield R, Gorski S M . The interplay between exosomes and autoph-agy - partners in crime. J Cell Sci, 2018,131(15):215210.
doi: 10.1242/jcs.215210
[13]   Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C , et al. Sorting it out: regulation of exosome loading. Semin Cancer Biol, 2014,28:3-13.
doi: 10.1016/j.semcancer.2014.04.009
[14]   Janas T, Janas M , Sapo$\acute{n}$ K , et al. Mechanisms of RNA loading into exosomes. FEBS Lett, 2015,89(13):1391-1398.
[15]   Andreu Z, Yáñez-Mó M . Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014,5:442.
[16]   Smith V L, Jackson L, Schorey J S . Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol, 2015,195(6):2722-2730.
doi: 10.4049/jimmunol.1403186
[17]   Sahu R, Kaushik S, Clement C C , et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell, 2011,20(1):131-139.
doi: 10.1016/j.devcel.2010.12.003
[18]   Edgar J R, Manna P T, Nishimura S , et al. Tetherin is an exosomal tether. eLife, 2016,5:e17180.
doi: 10.7554/eLife.17180
[19]   Hoshino A, Costa-Silva B, Shen T L , et al. Tumour exosome integrins determine organotropic metastasis. Nature, 2015,527(7578):329-335.
[20]   Kamerkar S, Lebleu V S, Sugimoto H , et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017,546(7659):498-503.
[21]   Christianson H C, Svensson K J, Van Kuppevelt T H , et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA, 2013,110(43):17380-17385.
doi: 10.1073/pnas.1304266110
[22]   Mulcahy L A, Pink R C, Carter D R . Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 2014,3(1):24641.
doi: 10.3402/jev.v3.24641
[23]   Heusermann W, Hean J, Trojer D , et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 2016,213(2):173-184.
doi: 10.1083/jcb.201506084
[24]   Klionsky D J, Emr S D . Autophagy as a regulated pathway of cellular degradation. Science, 2000,290(5497):1717-1721.
doi: 10.1126/science.290.5497.1717
[25]   Galluzzi L, Baehrecke E H, Ballabio A , et al. Molecular definitions of autophagy and related processes. EMBO J, 2017,36(13):1811-1836.
doi: 10.15252/embj.201796697
[26]   Tsukada M, Ohsumi Y . Isolation and characterization of autophagydefective mutants of saccharomyces cerevisiae. FEBS Lett, 1993,333(1-2):169-174.
doi: 10.1016/0014-5793(93)80398-E
[27]   Park J M, Jung C H, Seo M , et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy, 2016,12(3):547-564.
doi: 10.1080/15548627.2016.1140293
[28]   Matsuura A, Tsukada M, Wada Y , et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997,192(2):245-250.
doi: 10.1016/S0378-1119(97)00084-X
[29]   Ichimura Y, Kirisako T, Takao T , et al. A ubiquitinlike system mediates protein lipidation. Nature, 2000,408(6811):488-492.
[30]   Zhang M, Kenny S J, Ge L , et al. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife, 2015,4:1463.
[31]   Deretic V, Jiang S, Dupont N . Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol, 2012,22(8):397-406.
doi: 10.1016/j.tcb.2012.04.008
[32]   Florey O, Kim S E, Sandoval C P , et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol, 2011,13(11):1335-1343.
[33]   Martinez J, Almendinger J, Oberst A , et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA, 2011,108(42):17396-17401.
doi: 10.1073/pnas.1113421108
[34]   Fletcher K, Ulferts R, Jacquin E , et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J, 2018,37(4):e97840.
doi: 10.15252/embj.201797840
[35]   Codogno P, Mehrpour M, Proikas-Cezanne T . Canonical and non-canonical autophagy: variations on a common theme of self-eating. Nat Rev Mol Cell Biol, 2011,13(1):7-12.
[36]   Jacquin E, Leclerc-Mercier S, Judon C , et al. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy, 2017,13(5):854-867.
doi: 10.1080/15548627.2017.1287653
[37]   Tooze S A, Abada A, Elazar Z . Endocytosis and autophagy: exploitation or cooperation. Cold Spring Harbor Perspect Biol, 2014,6(5):a018358.
doi: 10.1101/cshperspect.a018358
[38]   Guo H, Chitiprolu M, Roncevic L , et al. Atg5 disassociates the V1 V0 -ATPase to promote exosome production and tumor metastasis independent of canonical macroautophagy. Dev Cell, 2017,43(6):716-730.
doi: 10.1016/j.devcel.2017.11.018
[39]   Murrow L, Malhotra R, Debnath J . ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol, 2015,17(3):300-310.
[40]   Martinez J, Malireddi R K, Lu Q , et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol, 2015,17(7):893-906.
[41]   Liu J, Zhang Y, Liu A , et al. Distinct dasatinib-induced mechanisms of apoptotic response and exosome release in imatinib-resistant human chronic myeloid leukemia cells. Int J Mol Sci, 2016,17(4):531.
doi: 10.3390/ijms17040531
[42]   Bader CA, Shandala T, Ng Y S , et al. Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes. Biol Open, 2015,4(11):1345-1355.
doi: 10.1242/bio.013979
[43]   Liou W, Geuze H J, Geelen M J , et al. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol, 1997,136(1):61-70.
doi: 10.1083/jcb.136.1.61
[44]   Fade C M, Sánchez D, Furlán M , et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic, 2008,9(2):230-250.
[45]   Villarroya-Beltri C, Baixauli F, Mittelbrunn M , et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun, 2016,7:13588.
[46]   Hurwitz S N, Cheerathodi M R, Nkosi D , et al. Tetraspanin CD63 bridges autophagic and endosomal processes to regulate exosomal secretion and intracellular signaling of Epstein-Barr virus LMP1. J Virol, 2018,92(5):e01969-17.
[47]   Patel K K, Miyoshi H, Beatty W L , et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J, 2013,32(4):3130-3144.
doi: 10.1038/emboj.2013.233
[48]   Chen Y D, Fang Y T, Cheng Y L , et al. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep, 2017,7(1):5676.
doi: 10.1038/s41598-017-06076-4
[49]   Bukong T N, Momen-Heravi F, Kodys K , et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog, 2014,10(10):e1004424.
doi: 10.1371/journal.ppat.1004424
[50]   Liu Z, Zhang X, Yu Q , et al. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun, 2014,455(3- 4):218-222.
doi: 10.1016/j.bbrc.2014.10.146
[51]   Shrivastava S, Devhare P, Sujijantarat N , et al. Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway. J Virol, 2015,90(3):1387-1396.
[52]   Ren H, Elgner F, Jiang B , et al. The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle. J Virol, 2016,90(13):5989-6000.
doi: 10.1128/JVI.00551-16
[53]   Wang L, Tian Y, Ou J J , et al. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog, 2015,11(3):e1004764.
doi: 10.1371/journal.ppat.1004764
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[4] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[5] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[6] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[7] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[8] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] WU Jia-han,JIANG Lin,CHEN Ting,SUN Jia-jie,ZHANG Yong-liang,XI Qian-yun. Research on the Interaction between Adipose Tissue Exosomes and Other Tissues[J]. China Biotechnology, 2020, 40(3): 111-116.
[11] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[12] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[13] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[14] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[15] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.