Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 101-105    DOI: 10.13523/j.cb.20190413
    
Monoclone Selection and Monoclonal Verification of Engineering Cell Lines
Yi-fan JIANG(),Jing DONG,Jing-shuang WEI
New Drug Research and Development Company Limited, North China Pharmaceutical Corporation, State Key Laboratory of Antibody Drug Development, Shijiazhuang 050015, China
Download: HTML   PDF(359KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The monoclonality of recombinant cell lines is one of the important factors to ensure the quality of the product, so it has received more and more attention. Currently, some drug regulatory agencies require the application organization to demonstrate the monoclonality of the cells via appropriate experimental. The process and common methods (such as limiting dilution cloning, ClonePix, and fluorescent-activated cell sorting) for the clone selection of engineering cell lines for production were introduced.How to ensure the monoclonal of engineering cell, and the significance of engineering monoclonal in the production of the biological drug were discussed.



Key wordsEngineering cell line      Monoclonality      Single-cell cloning imaging system      Limiting dilution method     
Received: 11 October 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Yi-fan JIANG     E-mail: jyifan@126.com
Cite this article:

Yi-fan JIANG,Jing DONG,Jing-shuang WEI. Monoclone Selection and Monoclonal Verification of Engineering Cell Lines. China Biotechnology, 2019, 39(4): 101-105.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190413     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/101

稀释比例 单克隆数 克隆数 单克隆率(%) 二轮单克隆率*
二轮0.3稀释(%) 二轮0.6稀释(%) 二轮0.8稀释(%)
0.3 12.6 14.0 89.3 98.9 97.5 96.9
0.6 18.8 24.6 76.4 97.5 94.4 93.2
0.8 21.8 30.6 71.2 96.9 89.2 88.0
Table 1 LDC combined with monoclonal imaging system to calculate monoclonal rate
Proximity(mm) P(clonality)(%)
0.50.7a 44
0.80.9 61
0.91.0 71
1.01.2 93
>1.25 >99
Table 2 Relationship between clonal distance and monoclonal rate during ClonePix selection
[1]   Quiroz J, Tsao Y S . Statistical analysis of data from limiting dilution cloning to assess monoclonality in generating manufacturing cell lines. Biotechnology Progress, 2016,32(4):1061-1068.
doi: 10.1002/btpr.2290 pmid: 27111698
[2]   Evans K, Albanetti T, Venkat R , et al. Assurance of monoclonality in one round of cloning through cell sorting for single cell deposition coupled with high resolution cell imaging. Biotechnology Progress, 2015,31(5):1172-1178.
doi: 10.1002/btpr.2145 pmid: 26195345
[3]   Zingaro K, Shaw D, Carson J , et al. Implementation of plate imaging for demonstration of monoclonality in biologics manufacturing development. PDA J Pharm Sci Technol, 2018,81(10):3835-3842.
doi: 10.5731/pdajpst.2018.008789 pmid: 29669815
[4]   Gargi R, Guillermo M Q, Li Z , et al. Sequential screening by ClonePix FL and intracellular staining facilitate isolation of high producer cell lines for monoclonal antibody manufacturing. Journal of Immunological Methods, 2017,415:100-110.
doi: 10.1016/j.jim.2017.08.012 pmid: 28890364
[5]   Mateus D L, Mariana L S, Angelica G , et al. A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential. Immunogic Research, 2018,66(1):1-14.
doi: 10.1007/s12026-017-8964-5 pmid: 29098527
[6]   Hou J J C, Hughes B S, Smede M , et al. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnology, 2014,31(3):214-220.
doi: 10.1016/j.nbt.2014.02.002 pmid: 24518824
[7]   Ahmed O, Burke J, Mann C , et al. Using ClonePix FL to assess monoclonality. Genrtic Engineering & Biotechnology News, 2009,29(19):38-39.
[8]   Sivia C, Mohamed A R . The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opinion on Biological Therapy, 2004,4(11):1821-1829.
doi: 10.1517/14712598.4.11.1821
[9]   Basu S, Campbell H M, Dittel B N , et al. Purification of specific cell population by fluorescence activated cell sorting. Journal of Visualized Experiments, 2010,41(e1546):1-4.
doi: 10.3791/1546 pmid: 3144656
[10]   Lee C J, Seth G, Tsukuda J , et al. A clone screening method using mRNA levels to determine specific productivity and product quality for monoclonal antibodies. Biotechnology and Bioengineering, 2008,102(4):1107-1118.
doi: 10.1002/bit.22126 pmid: 18985612
[11]   Gross A, Schondube J, Niekrawitz S , et al. Single-cell printer: automated, on demand, and label free. Journal of Laboratory Automation, 2013,18(6):504-518.
doi: 10.1177/2211068213497204
[12]   Stumpf F, Schoendube J, Gross A , et al. Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation. Biosensors & Bioelectronic, 2015,69:301-306.
doi: 10.1016/j.bios.2015.03.008 pmid: 25771302
[13]   Trask B J . Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics, 1991,7(5):149.
doi: 10.1016/0168-9525(91)90378-4 pmid: 2068787
[14]   Levsky J M, Singer R H . Fluorescence in situ hybridization: past, present and future. Journal of Cell Science, 2003,116(14):2833-2838.
doi: 10.1242/jcs.00633 pmid: 12808017
[15]   Scarcelli J J, Hone M, Beal K , et al. Analytical subcloning of a clonal cell line demonstrates sequence heterogeneity that does not impact process consistency or robustness. Cell Culture and Tissue Engineering, 2018,34(3):602-612.
doi: 10.1002/btpr.2646
[16]   Nakamura T, Omasa T . Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. Journal of Bioscience and Bioengineering, 2015,120(3):323-329.
doi: 10.1016/j.jbiosc.2015.01.002 pmid: 25792187
[1] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.