Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 32-37    DOI: 10.13523/j.cb.20190405
    
Analysis of Martrix Targeting Sequence of Human Mitochondrial OGT in Saccharomyces cerevisiae
Feng LI,Xiao-dong GAO,Hideki NAKANISHI()
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(821KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Human mitochondrial O-GlcNAc transferase (mOGT) localized in mitochondria inner membrane through its N-terminal martrix targeting sequence(MTS), mOGT overexpression caused cell spoptosis. O-GlcNAc modification existed in most eukaryote cells except Saccharomyces cerevisiae. In order to analyze mOGT induced mammalian cell apoptosis, the mechanism of mOGT caused yeast cell growth defect was investigated. Herein, mOGT was overexpressed in Saccharomyces cerevisiae. Both yeast growth defect and mOGT localization were largely depends on MTS sequence. Furthermore, MTS expression caused yeast mitochondria fussion. Therefore, MTS overexpressed yeast cells might be applied to analyze mOGT caused cell apoptosis.



Key wordsHuman mOGT      Matrix-targeting sequence      Mitochondria fussion     
Received: 02 November 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Hideki NAKANISHI     E-mail: hideki@jiangnan.edu.cn
Cite this article:

Feng LI,Xiao-dong GAO,Hideki NAKANISHI. Analysis of Martrix Targeting Sequence of Human Mitochondrial OGT in Saccharomyces cerevisiae. China Biotechnology, 2019, 39(4): 32-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190405     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/32

Fig.1 The structure schematic of OGT
质粒/引物 说明/基因型/引物序列(5'-3') 来源
质粒
pRS424GAL1pr TRP1 标记 多拷贝 GAL1 启动子 [16]
pRS424GAL1pr-mOGT TRP1 标记 多拷贝 GAL1 启动子 含mOGT [17]
pRS424GAL1pr-mOGT-RFP TRP1 标记 多拷贝 GAL1 启动子 含C端RFP标记的mOGT基因 本研究
pRS424GAL1pr-mOGT(N△50) TRP1 标记 多拷贝 GAL1 启动子 含mOGT(N△50)基因 本研究
pRS424GAL1pr- MTS15-RFP TRP1 标记 多拷贝 GAL1 启动子 含MTS15-RFP 本研究
pRS424GAL1pr- MTS50-RFP TRP1 标记 多拷贝 GAL1 启动子 含MTS50-RFP 本研究
pRS426TEF2pr URA3 标记 多拷贝 TEF2 启动子 [18]
pRS426TEF2pr-OGA URA3 标记 多拷贝 TEF2 启动子 含OGA基因 [14]
引物
OGA-F(Cla Ⅰ) GCGCATCGATATGGTGCAGAAGGAGAGTCA 本研究
OGA-R (XhoⅠ) GCGCCTCGAGCTACAGGCTCCGACCAAGTA 本研究
MTS15-F(Spe Ⅰ) GCGCACTAGTATGCTGCAGGGTCACTTTTGGCTGGTCAGAGAAGG
AATAATGATAAAAGGAGAAGAACTTTTCAC
本研究
MTS50-F(XbaⅠ) GCGCTCTAGAATGCTGCAGGGTCACTTTTG 本研究
MTS50-R(Hind Ⅲ) GCGCAAGCTTAGGAGGGGTTAATGAAAGAA 本研究
mOGT-R(Hind Ⅲ) GCGCAAGCTTTGCTGACTCAGTGACTTCAA 本研究
Table 1 Plasmids and primers
Fig.2 OGA could not rescue the growth defect of either mOGT or mOGT(H382A) expressing yeast cells
Fig.3 MOGT caused yeast growth defect depends on its MTS sequence
Fig.4 MOGT localized in yeast mitochondria (a)The mitochondria structure of yeast cell with vector (b)The mitochondria structure of yeast cell with mOGT-RFP (c)RFP signal of (b) (d)The overlayed image of (b) and (c) The mitochondria structure (green) and mOGT-RFP (red) localizations were represented by fluorescent microscope
Fig.5 MTS sequence caused yeast mitochondria fussion The mitochondria structure (green) and mOGT-RFP (red) localizations of yeast cell with vector (a), MTS15-RFP (b), MTS50-RFP (c) were represented by fluorescent microscope under bright field, red fluorescent, green fluorescent models (d)The overlayed image of red fluorescent and green fluorescent signals in (c)
Fig.6 MTS sequence caused yeast growth defect
[1]   Hart G W . Minireview series on the thirtieth anniversary of research on O-GlcNAcylation of nuclear and cytoplasmic proteins: Nutrient regulation of cellular metabolism and physiology by O-GlcNAcylation. Journal of Biological Chemmistry, 2014,289(50):34422-34423.
doi: 10.1074/jbc.R114.609776
[2]   Marshall S, Bacote V, Traxinger R R . Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. Journal of Biological Chemmistry, 1991,266(8):4706-4712.
doi: 10.0000/PMID2002019 pmid: 2002019
[3]   Vaidyanathan K, Wells L . Multiple tissue-specific roles for the O-GlcNAc post-translational modification in the induction of and complications arising from type II diabetes. Journal of Biological Chemmistry, 2014,289(50):34466-34471.
doi: 10.1074/jbc.R114.591560
[4]   Ma Z, Vosseller K . Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. Journal of Biological Chemmistry, 2014,289(50):34457-34465.
doi: 10.1074/jbc.R114.577718
[5]   Marsh S A, Collins H E, Chatham J C . Protein O-GlcNAcylation and cardiovascular (patho)physiology. Journal of Biological Chemmistry, 2014,289(50):34449-34456.
doi: 10.1074/jbc.R114.585984
[6]   Zhu Y, Shan X, Yuzwa S A , et al. The emerging link between O-GlcNAc and Alzheimer disease. Journal of Biological Chemmistry, 2014,289(50):34472-34481.
doi: 10.1074/jbc.R114.601351
[7]   Hanover J A, Yu S, Lubas W B , et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Archives of Biochemistry Biophysics, 2003,409(2):287-297.
doi: 10.1016/S0003-9861(02)00578-7 pmid: 12504895
[8]   Burnham-Marusich A R, Berninsone P M . Multiple proteins with essential mitochondrial functions have glycosylated isoforms. Mitochondrion, 2012,12(4):423-427.
doi: 10.1016/j.mito.2012.04.004 pmid: 22564751
[9]   Ma J, Liu T, Wei A C , et al. O-GlcNAcomic profiling identifies widespread O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) in oxidative phosphorylation system regulating cardiac mitochondrial function. Journal of Biological Chemmistry, 2015,290(49):29141-29153.
doi: 10.1074/jbc.M115.691741
[10]   Hu Y, Suarez J, Fricovsky E , et al. Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. Journal of Biological Chemmistry, 2009,284(1):547-555.
doi: 10.1074/jbc.M808518200 pmid: 19004814
[11]   Lazarus M B, Nam Y, Jiang J , et al. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature, 2011,469(7331):564-567.
doi: 10.1038/nature09638 pmid: 21240259
[12]   Sacoman J L, Dagda R Y , Burnham-Marusich A R , et al. Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function and survival in HeLa cells. Journal of Biological Chemmistry, 2017,292(11):4499-4518.
doi: 10.1074/jbc.M116.726752
[13]   Halim A, Larsen I S, Neubert P , et al. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast. Proceedings of the National Academy of Science of the United States of America, 2015,112(51):15648-15653.
[14]   Nakanishi H, Li F, Han B X , et al. Yeast cells as an assay system for in vivo O-GlcNAc modification. Biochimica et Biophysica acta -General Subjects , 2017,1861(5):1159-1167.
doi: 10.1016/j.bbagen.2017.03.002
[15]   韩宝仙, 高晓冬, 中西秀树 . 人体线粒体N-乙酰氨基葡萄糖转移酶在酿酒酵母中的表达. 食品与生物技术学报, 2016,35(9):987-992.
[15]   Han B X, Gao X D, Nakanishi H . Expression of a human mitochondrial N-acetylglucosamine transferase in Saccharomyces cerevisiae. Journal of Food Science and Biotechnology, 2016,35(9):987-992.
[16]   Longtine M S, Mckenzie Iii A, Demarini D J , et al. Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 2010,14(10):953-961.
[17]   Lubas W A, Frank D W, Krause M , et al. O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. Journal of Biological Chemmistry, 1997,272(14):9316-9324.
doi: 10.1074/jbc.272.14.9316
[18]   Mumberg D, Müller R, Funk M . Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene, 1995,156(1):119-122.
doi: 10.1016/0378-1119(95)00037-7 pmid: 7737504
[19]   Banerjee P S, Ma J, Hart G W . Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proceedings of the National Academy of Science of the United States of America, 2015,112(19):6050-6055.
doi: 10.1073/pnas.1424017112
[20]   Love D C, Kochan J, Cathey R L , et al. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. Journal of Cell Science, 2003,116(4):647-654.
doi: 10.1242/jcs.00246 pmid: 12538765
[21]   Shin S H, Love D C, Hanover J A . Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino Acids, 2011,40(3):885-893.
doi: 10.1007/s00726-010-0719-8 pmid: 20824293
[22]   Bocharova N, Chave-Cox R, Sokolov S , et al. Protein aggregation and neurodegeneration: clues from a yeast model of Huntington’s disease. Biochemistry, 2009,74(2):231-234.
doi: 10.1134/S0006297909020163 pmid: 19267681
[23]   Zha H, Fisk H A, Yaffe M P , et al. Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Molecular and Cellular Biology, 1996,16(11):6494-6508.
doi: 10.1128/MCB.16.11.6494 pmid: 231651
[24]   Bossywetzel E, Barsoum M J, Godzik A , et al. Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology, 2003,15(6):706-716.
doi: 10.1016/j.ceb.2003.10.015 pmid: 14644195
[25]   Mignotte B, Vayssiere J L . Mitochondria and apoptosis. European Journal of Biochemistry, 1998,252(1):1-15.
doi: 10.1046/j.1432-1327.1998.2520001.x
[26]   安志远, 丁文一 . 鲍曼不动杆菌Omp34经线粒体途径诱导HeLa细胞凋亡. 生物技术, 2018,28(4):323-328.
[26]   An Z Y, Ding W Y . The outer membrane protein of Acinetobacter baumannii induces apoptosis in HeLa cells through mitochondria signal pathway. Biotechnology, 2018,28(4):323-328.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.