Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 16-23    DOI: 10.13523/j.cb.20190403
    
Delayed Activation Can Improve in Vitro and in Vivo Developmental Capacity of Pig Cloned Embryos
Jun-song SHI1,Lü-hua LUO1,Rong ZHOU1,Ran-biao MAI1,Hong-mei JI1,Wan-xian YU1,Zhen-fang WU2,Geng-yuan CAI2**()
1 National Engineering Research Center for Breeding Swine Industry, WENS Foodstuff Group Co.Ltd,Xinxing 527400,China
2 College of Animal Science, South China Agricultural University,Guangzhou 510642,China
Download: HTML   PDF(1284KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of delayed activation on in vitro and in vivo porcine somatic cell clone was studied in order to enhance the efficiency of porcine clone so as to obtain more clone pigs. Related studies had shown that, compared with synchronous fusion activation, delayed activation could significantly improve the cleavage rate (P<0.01) and the blastocyst rate (P<0.05) of cloned embryos, although it might decrease the fusion rate of cloned reconstructed embryos (P> 0.05). CB was utilized to assist in the delayed activation for 4h to reconstruct embryos. The blastocyst rate of the delayed activation group was significantly higher than that of the group not using CB (P<0.01). Cloned embryos were transplanted into 126 recipient sows. It was shown that the parturition rate of recipient sows was remarkably higher in the delayed activation group than in the synchronous activation group (P<0.05). Although these two groups did not differ significantly in terms of average litter size, average live births and clone efficiency, it was obvious that more cloned piglets were obtained in the delayed activation group than in the synchronous group. The above-mentioned result demonstrates that delayed activation may enhance the in vitro and in vivo development efficiency of porcine clone embryos.



Key wordsDelayed activation      Cloning      Pig     
Received: 28 September 2018      Published: 08 May 2019
ZTFLH:  S814.8  
Corresponding Authors: Geng-yuan CAI     E-mail: cgy0415@163.com
Cite this article:

Jun-song SHI,Lü-hua LUO,Rong ZHOU,Ran-biao MAI,Hong-mei JI,Wan-xian YU,Zhen-fang WU,Geng-yuan CAI. Delayed Activation Can Improve in Vitro and in Vivo Developmental Capacity of Pig Cloned Embryos. China Biotechnology, 2019, 39(4): 16-23.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190403     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/16

Fig.1 Effect of delayed activation methods on fusion efficiency and in vitro development competence of cloned pig embryos Data are the mean±SEM. Bars with different letters differ significantly (a/b, P<0.05)
Fig.2 Effect of delayed activation methods on fusion efficiency and in vitro development competence of cloned pig embryos Data are the mean±SEM. Bars with different letters differ significantly (A/B,P<0.01; a/b, P<0.05)
Fig.3 Effect of post-activation treatment with cytochalasin B on the in vitro development of pig cloned embryos
Fig.4 Blastocyst stage of nuclear transfer oocytes developed for 144h after activation and nuclei numbers of blastocysts following Hoechst 33342 staining (a) Embryos of simultaneous fusion and activation developed for 144h (b) Embryos of delayed activation developed for 144h (c) Fluorescent pictures of blastocyst of simultaneous fusion and activation (d) Fluorescent pictures of blastocyst of delayed activation
激活方法 受体(头) 移植胚胎数(头) 妊娠头数(%) 分娩头数(%)
同步激活 63 15 331(243) 47(74.06±1.82) 32(50.38±8.00)a
延迟激活 63 15 186(241) 50(79.12±3.76) 41(65.60±1.63)b
Table 1 Effects of the delayed activation methods on pregnancy rate
激活方法 出生总仔(窝均) 出生活仔(窝均) 总仔/受体 克隆效率(%)# 克隆效率(%)*
同步激活 115(3.59±0.36) 92(2.88±0.34) 1.72±0.24 0.75 1.47
延迟激活 163(3.98±0.36) 110(2.68±0.29) 2.45±0.31 1.07 1.73
Table 2 Effects of the delayed activation methods on offspring production after transfer of cloned pig embryos
Fig.5 Seven piglets cloned by nuclear transfer of delayed activation methods
[1]   Betthauser J, Forsberg E, Augenstein M , et al. Production of cloned pigs from in vitro systems. Nat Biotechnol, 2000,18(10):1055-1059.
doi: 10.1038/80242 pmid: 11017042
[2]   Onishi A, Iwamoto M, Akita T , et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science. 2000,289(5482):1188-1190.
doi: 10.1126/science.289.5482.1188 pmid: 10947985
[3]   Kawakami M, Tani T, Yabuuchi A , et al. Effect of demecolcine and nocodazole on the efficiency of chemically assisted removal of chromosomes and the developmental potential of nuclear transferred porcine oocytes. Cloning Stem Cells, 2003,5(4):379-387.
doi: 10.1089/153623003772032871 pmid: 14733755
[4]   Lagutina I, Lazzari G, Galli C . Birth of cloned pigs from zona-free nuclear transfer blastocysts developed in vitro before transfer. Cloning Stem Cells, 2006,8(4):283-293.
doi: 10.1089/clo.2006.8.283
[5]   Yuan Y, Spate L D, Redel B K , et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation. Proceedings of the National Academy of Sciences, 2017,114(29):E5796-E5804.
doi: 10.1073/pnas.1703998114 pmid: 28673989
[6]   Liu Y, Li J, Løvendahl P , et al. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets . Reproduction, Fertility and Development, 2015,27(3):429.
doi: 10.1071/RD13329 pmid: 25482653
[7]   Vajta G, Zhang Y, Machaty Z . Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod Fertil Dev, 2007,19(2):403-423.
doi: 10.1071/RD06089
[8]   卫恒习, 李俊, 童佳 , 等. 猪克隆胚胎激活方法优化与转人溶菌酶基因克隆猪的生产. 生物化学与生物物理进展. 2013,40(01):72-79.
[8]   Wei H X, Li J, Tong J , et al. Optimizing of activation protocols and production of transgenic pigs expressing human lysozyme by somatic cell nuclear transfer. Progress in Biochemistry and Biophysics. 2013,40(1):72-79.
[9]   Kwon D J, Park C K, Yang B K , et al. Control of nuclear remodelling and subsequent in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction, 2008,135(5):649-656.
doi: 10.1530/REP-06-0387 pmid: 18411411
[10]   Lee J H, Campbell K H . Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol Reprod, 2006,74(4):691-698.
doi: 10.1095/biolreprod.105.043885 pmid: 16371593
[11]   Liu J, Wang Y, Su J , et al. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos. Cell Reprogram, 2013,15(2):134-142.
doi: 10.1089/cell.2012.0052 pmid: 23461480
[12]   Lee J, You J, Lee G S , et al. Combined treatment with demecolcine and 6-dimethylaminopurine during postactivation improves developmental competence of somatic cell nuclear transfer embryos in pigs. Anim Biotechnol, 2018,29(1):41-49.
doi: 10.1080/10495398.2017.1294598 pmid: 28358237
[13]   Song K, Hyun S H, Shin T , et al. Post-activation treatment with demecolcine improves development of somatic cell nuclear transfer embryos in pigs by modifying the remodeling of donor nuclei. Mol Reprod Dev, 2009,76(7):611-619.
doi: 10.1002/mrd.20989 pmid: 19107916
[14]   Aston K I, Li G P, Hicks B A , et al. Effect of the time interval between fusion and activation on nuclear state and development in vitro and in vivo of bovine somatic cell nuclear transfer embryos. Reproduction, 2006,131(1):45-51.
doi: 10.1530/rep.1.00714 pmid: 16388008
[15]   Cheong H, Park K, Im G , et al. Effect of elevated Ca 2+ concentration in fusion/activation medium on the fusion and development of porcine fetal fibroblast nuclear transfer embryos . Mol Reprod Dev, 2002,61(4):488-492.
doi: 10.1108/09653560610659784 pmid: 11891920
[16]   De Sousa P A, Dobrinsky J R, Zhu J , et al. Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol Reprod, 2002,66(3):642-650.
doi: 10.1095/biolreprod66.3.642 pmid: 11870070
[17]   Kurome M, Fujimura T, Murakami H , et al. Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning. Cloning Stem Cells, 2003,5(4):367-378.
doi: 10.1089/153623003772032862 pmid: 14733754
[18]   Kwon D J, Park C, Yang B , et al. Effects of maturational age of recipient oocytes and activation conditions on the development of porcine fetal fibroblast nuclear transfer embryos. Anim Reprod Sci, 2007,100(1):211-215.
doi: 10.1016/j.anireprosci.2006.09.007 pmid: 17011146
[19]   You J, Song K, Lee E . Prolonged interval between fusion and activation impairs embryonic development by inducing chromosome scattering and nuclear aneuploidy in pig somatic cell nuclear transfer . Reproduction, Fertility and Development, 2010,22(6):977-986.
doi: 10.1071/RD09309 pmid: 20591332
[20]   Lu F, Jiang J, Li N , et al. Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts. Theriogenology, 2011,76(5):967-974.
doi: 10.1016/j.theriogenology.2011.04.026 pmid: 21752448
[21]   Yin X, Cho S, Park M , et al. Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. Zygote, 2003,11(2):167-174.
doi: 10.1017/S096719940300220X pmid: 12828416
[22]   Rim C H, Fu Z, Bao L , et al. The effect of the number of transferred embryos, the interval between nuclear transfer and embryo transfer, and the transfer pattern on pig cloning efficiency. Anim Reprod Sci, 2013,143(1-4):91-96.
doi: 10.1016/j.anireprosci.2013.10.004 pmid: 24238725
[23]   Zhang Z, Zhai Y, Ma X , et al. Down-regulation of H3K4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell Physiol Biochem, 2018,45(4):1529-1540.
doi: 10.1159/000487579 pmid: 29466785
[24]   Selokar N L, Shah R A, Saha A P , et al. Effect of post-fusion holding time, orientation and position of somatic cell-cytoplasts during electrofusion on the development of handmade cloned embryos in buffalo (Bubalus bubalis). Theriogenology, 2012,78(4):930-936.
doi: 10.1016/j.theriogenology.2012.03.018 pmid: 22541327
[25]   阎新龙, 林艳丽, 刘珠果 , 等. 不同电融合和激活参数对猪体细胞核移植胚胎发育的影响. 军事医学科学院院刊, 2006,30(2):140-143.
doi: 10.3969/j.issn.1674-9960.2006.02.010
[25]   Yan X L, Lin Y L, Liu Z G , et al. Influence of different parameters of electrical fusion and activation on development of porcine somatic cell nuclear transfer embryo. Bulletin of the Academy of Military Medical Sciences. 2006,( 2):140-143.
doi: 10.3969/j.issn.1674-9960.2006.02.010
[26]   吕玲燕, 陆杏蓉, 吴永绍 , 等. 不同电融合参数对猪手工克隆重构胚胎发育效果的影响. 湖北农业科学, 2016,55(21):5577-5580.
[26]   Lu L Y, Lu X R, Wu Y S , et al. Effects of developmental potency of reconstructed embryos on pig handmade clone with different electrofusion parameters. Hubei Agricultural Sciences, 2016,55(21):5577-5580.
[27]   李日聪, 王锦, 薛林涛 , 等. 猪体细胞核移植电融合参数的研究. 广西农业生物科学, 2008,27(4):304-308.
doi: 10.7666/d.y985863
[27]   Li R C, Wang J, Xue L T , et al. Studies on the electric fusion parameters for nuclear transfer of porcine somatic cells. Journal of Guangxi Agric and Biol Science, 2008,27(4):304-308.
doi: 10.7666/d.y985863
[28]   Goodall H . Manipulation of gap junctional communication during compaction of the mouse early embryo. J Embryol Exp Morphol, 1986,91:283-296.
doi: 10.1016/0165-3806(86)90165-3 pmid: 3711789
[29]   Pey R, Vial C, Schatten G , et al. Increase of intracellular Ca 2+ and relocation of E-cadherin during experimental decompaction of mouse embryos . Proc Natl Acad Sci USA, 1998,95(22):12977-12982.
doi: 10.1073/pnas.95.22.12977 pmid: 9789026
[30]   Whitworth K M, Li R, Spate L D , et al. Method of oocyte activation affects cloning efficiency in pigs. Mol Reprod Dev, 2009,5(76):490-500.
[31]   Liu J, Li LL, Du S , et al. Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. Theriogenology, 2011,76(6):1076-1083.
doi: 10.1016/j.theriogenology.2011.05.013 pmid: 21752443
[32]   Lai L, Tao T, Machaty Z , et al. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol Reprod, 2001,65(5):1558-1564.
doi: 10.1095/biolreprod65.5.1558 pmid: 11673275
[33]   Kim Y S, Lee S L, Ock S A , et al. Development of cloned pig embryos by nuclear transfer following different activation treatments. Mol Reprod Dev, 2005,70(3):308-313.
doi: 10.1002/mrd.20211 pmid: 15625691
[34]   Siracusa G, Whittingham D G, De Felici M . The effect of microtubule- and microfilament-disrupting drugs on preimplantation mouse embryos. J Embryol Exp Morphol, 1980,60:71-82.
pmid: 7198136
[35]   Sugimura S, Kawahara M, Wakai T , et al. Effect of cytochalasins B and D on the developmental competence of somatic cell nuclear transfer embryos in miniature pigs. Zygote, 2008,16(2):153-159.
doi: 10.1017/S0967199407004480
[36]   Yamanaka K, Sugimura S, Wakai T , et al. Effect of activation treatments on actin filament distribution and in vitro development of miniature pig somatic cell nuclear transfer embryos. J Reprod Dev, 2007,53(4):791-800.
doi: 10.1262/jrd.18162 pmid: 17420620
[37]   Sayaka W, Satoshi K, Van Thuan N , et al. Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote, 2008,16(3):211-222.
doi: 10.1017/S0967199408004620 pmid: 18578946
[38]   杨洪武, 齐晓龙, 熊善辉 , 等. 不同联合激活方法对牛体细胞核移植胚胎体外发育的影响. 中国农学通报, 2015,31(11):59-62.
[38]   Yang H W, Qi X L, Xiong S H , et al. Influence of different united activation on development of bovine somatic cell transfer embryo. Chinese Agricultural Science Bulletin, 2015,31(11):59-62.
[39]   Huang Y, Tang X, Xie W , et al. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem Biophys Res Commun, 2011,411(2):397-401.
doi: 10.1016/j.bbrc.2011.06.160 pmid: 21749856
[40]   Hosseini S M, Dufort I, Nieminen J , et al. Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. Bmc Genomics, 2016,17(1):1-21.
doi: 10.1186/s12864-015-2294-6 pmid: 26818753
[41]   Liu T, Dou H, Xiang X , et al. Factors determining the efficiency of porcine somatic cell nuclear transfer: data analysis with over 200 000 reconstructed embryos. Cell Reprogram, 2015,17(6):463-471.
doi: 10.1089/cell.2015.0037 pmid: 26655078
[1] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[2] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[3] Yi-fan JIANG,Jing DONG,Jing-shuang WEI. Monoclone Selection and Monoclonal Verification of Engineering Cell Lines[J]. China Biotechnology, 2019, 39(4): 101-105.
[4] Jian PENG,Jing SU,Xiao-hui YANG,Teng-fei WANG,Jun-qing WANG,Rui-ming WANG. Studies on Efficient Utilization of Glycerol of Candida tropicalis 1798[J]. China Biotechnology, 2018, 38(2): 38-45.
[5] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[6] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[7] MENG Ying-ying, YAO Chang-hong, LIU Jiao, SHEN Pei-li, XUE Song, YANG Qing. Review and Evaluation of Microalgal Components Determination Methods[J]. China Biotechnology, 2017, 37(7): 133-143.
[8] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[9] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[10] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[11] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[12] ZHANG Min, TIAN Yin-shuai, HU Xiao-le, XU Ying, CHEN Fang. Cloning and Expression Analysis of JcAGG3, G-protein Gamma Subunitsthree Gene from Jatrophacurcas L.[J]. China Biotechnology, 2016, 36(5): 46-52.
[13] CHEN Xiao-feng, HU Pan, LI Yan-song, GUO Xing, ZOU De-ying, LIU Nan-nan, LU Shi-ying, ZHOU Yu, LIU Zeng-shan, LI Zhao-hui, REN Hong-lin. Molecular Cloning, Prokaryotic Expression and Polyclonal Antibody Preparation of Peroxiredoxin 6 (Prdx6) from Mus musculus[J]. China Biotechnology, 2016, 36(3): 11-16.
[14] LI Da, DAI Peng, WANG Wei, ZHANG Wen-tao, WANG Qin, SHU Yi, ZHU Chun-lai, JI Qi-feng, LIANG Ping, YAN Zhen. Cloning and Expression of PLCE1 Gene and Its Haplotypes of rs2274223 and rs3765524[J]. China Biotechnology, 2016, 36(12): 1-7.
[15] DAI Yu huan, XU Yao, LUO Ying, DAI Yang, SHI Wei lin, XU Yao. The Transcriptional Regulation of Ca2+ Channel Mediated by Myocardin in H9C2 Cell[J]. China Biotechnology, 2016, 36(11): 1-6.