Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (2): 82-89    DOI: 10.13523/j.cb.20190210
Orginal Article     
Progress in Non-structural Protein 1 (NS1) Based Diagnosis of Flaviviruses Infection
Zhou TONG(),Jing-hua YAN
The Institute of Microbiology of the Chinese Academy of Sciences,Beijing 100101,China
Download: HTML   PDF(1882KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Mosquito-borne flaviviruses provide some of the most important examples of emerging and resurging diseases of global significance. The early diagnosis of flaviviruses infection is important for successful clinical management and epidemiological control. Multiple RT-PCR-based assays for the detection of flaviviruses are limited to the narrow window when viral RNA is detectable in body fluids. Therefore, host immune reponse-based assays play an important role. Unfortunately, flaviviruses diagnosis are challenging due to the cross-reactive nature of antibodies among flaviviruses. The non-structural protein 1 (NS1) of flavivirus, a highly conserved and secreted glycoprotein, is abundant in the serum of flavivirus-infected patients and represents a useful early diagnostic marker. After ZIKV emerged as a global health threat, causing a pandemic in the Americas at 2016, lots of research groups focus on the NS1 based diagnosis. The improvements either from strategy or technology, which would significantly improve the differential diagnosis among flaviviruses infections.

Key wordsFlaviviruses      Non-structural protein 1 (NS1)      Diagnosis      Specific antibody     
Received: 10 January 2019      Published: 26 March 2019
ZTFLH:  Q81  
Cite this article:

Zhou TONG,Jing-hua YAN. Progress in Non-structural Protein 1 (NS1) Based Diagnosis of Flaviviruses Infection. China Biotechnology, 2019, 39(2): 82-89.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190210     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I2/82

Fig.1 Amino acid sequence alignment of flavivirus NS1 proteins
Fig.2 Comparation of the ZIKV NS1 and the DEV II NS1 in electrostatic surface potential at neutral pH
[1]   Mackenzie J S, Gubler D J, Petersen L R . Emerging flaviviruses: The spread and resurgence of japanese encephalitis, west nile and dengue viruses. Nature Medicine, 2004,10:S98-109.
doi: 10.2135/cropsci2000.404968x pmid: 15577938
[2]   Fernandez-Garcia M D, Mazzon M, Jacobs M , et al. Pathogenesis of flavivirus infections: Using and abusing the host cell. Cell Host & Microbe, 2009,5:318-328.
doi: 10.1016/j.chom.2009.04.001 pmid: 19380111
[3]   Reinhold JM, Lazzari CR, Lahondere C . Effects of the environmental temperature on aedes aegypti and aedes albopictus mosquitoes: A review. Insects, 2018,9.
doi: 10.3390/insects9040158
[4]   Muller D A, Depelsenaire A C, Young P R . Clinical and laboratory diagnosis of dengue virus infection. The Journal of Infectious Diseases, 2017,215:S89-s95.
doi: 10.1093/infdis/jiw649 pmid: 28403441
[5]   Domingo C, Charrel R N, Schmidt-Chanasit J , et al. Yellow fever in the diagnostics laboratory. Emerging Microbes & Infections, 2018,7:129.
doi: 10.1038/s41426-018-0128-8
[6]   Connor B, Bunn W B . The changing epidemiology of japanese encephalitis and new data: The implications for new recommendations for japanese encephalitis vaccine. Tropical Diseases, Travel Medicine and Vaccines, 2017,3:14.
doi: 10.1186/s40794-017-0057-x pmid: 5537987
[7]   Chancey C, Grinev A, Volkova E , et al. The global ecology and epidemiology of west nile virus. BioMed Research International, 2015,2015:376230.
doi: 10.1155/2015/376230 pmid: 25866777
[8]   Steinhagen K, Probst C, Radzimski C , et al. Serodiagnosis of zika virus (zikv) infections by a novel ns1-based elisa devoid of cross-reactivity with dengue virus antibodies: A multicohort study of assay performance, 2015 to 2016. Euro Surveillance, 2016, 21(50): pii: 30426.
doi: 10.2807/1560-7917.ES.2016.21.50.30426 pmid: 28006649
[9]   Wong S J, Furuya A, Zou J , et al. A multiplex microsphere immunoassay for zika virus diagnosis. EBioMedicine, 2017,16:136-140.
doi: 10.1016/j.ebiom.2017.01.008 pmid: 28094237
[10]   Landry M L, St George K . Laboratory diagnosis of zika virus infection. Archives of Pathology & Laboratory Medicine, 2017,141:60-67.
doi: 10.5858/arpa.2016-0406-SA pmid: 27763787
[11]   Fritzell C, Rousset D, Adde A , et al. Current challenges and implications for dengue, chikungunya and zika seroprevalence studies worldwide: A scoping review. PLoS Neglected Tropical Diseases, 2018,12:e0006533.
doi: 10.1371/journal.pntd.0006533
[12]   Stettler K, Beltramello M, Espinosa D A , et al. Specificity, cross-reactivity, and function of antibodies elicited by zika virus infection. Science, 2016,353:823-826.
doi: 10.1126/science.aaf8505 pmid: 27417494
[13]   Song H, Qi J, Haywood J , et al. Zika virus ns1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nature structural & Molecular biology, 2016,23:456-458.
doi: 10.1038/nsmb.3213 pmid: 27088990
[14]   Heffron A S, Mohr E L, Baker D , et al. Antibody responses to zika virus proteins in pregnant and non-pregnant macaques. PLoS neglected tropical diseases, 2018,12:e0006903.
doi: 10.1371/journal.pntd.0006903
[15]   Martinez J D , Garza J A C, Cuellar-Barboza A. Going viral 2019: Zika, chikungunya, and dengue. Dermatologic Clinics, 2019,37:95-105.
doi: 10.1016/j.det.2018.07.008
[16]   Mandl C W, Guirakhoo F, Holzmann H , et al. Antigenic structure of the flavivirus envelope protein e at the molecular level, using tick-borne encephalitis virus as a model. Journal of Virology, 1989,63:564-571.
doi: 10.1016/0166-0934(94)00119-2 pmid: 2463377
[17]   Rockstroh A, Moges B, Barzon L , et al. Specific detection of dengue and zika virus antibodies using envelope proteins with mutations in the conserved fusion loop. Emerging Microbes & Infections, 2017,6:e99.
doi: 10.1038/emi.2017.87
[18]   Rockstroh A, Barzon L, Pacenti M , et al. Recombinant envelope-proteins with mutations in the conserved fusion loop allow specific serological diagnosis of dengue-infections. PLoS Neglected Tropical Diseases, 2015,9:e0004218.
doi: 10.1371/journal.pntd.0004218 pmid: 4643925
[19]   Garcia G, Vaughn D W , Del Angel R M. Recognition of synthetic oligopeptides from nonstructural proteins ns1 and ns3 of dengue-4 virus by sera from dengue virus-infected children. The American Journal of Tropical Medicine And Hygiene, 1997,56:466-470.
doi: 10.1016/S0001-706X(96)00641-9 pmid: 9158059
[20]   Shu P Y, Chen L K, Chang S F , et al. Potential application of nonstructural protein ns1 serotype-specific immunoglobulin g enzyme-linked immunosorbent assay in the seroepidemiologic study of dengue virus infection: Correlation of results with those of the plaque reduction neutralization test. Journal of Clinical Microbiology, 2002,40:1840-1844.
doi: 10.1128/JCM.40.5.1840-1844.2002 pmid: 11980973
[21]   Wong S J, Boyle R H, Demarest V L , et al. Immunoassay targeting nonstructural protein 5 to differentiate west nile virus infection from dengue and st. Louis encephalitis virus infections and from flavivirus vaccination. Journal of Clinical Microbiology, 2003,41:4217-4223.
doi: 10.1128/JCM.41.9.4217-4223.2003 pmid: 193845
[22]   Akey DL, Brown WC, Dutta S , et al. Flavivirus ns1 structures reveal surfaces for associations with membranes and the immune system. Science, 2014,343:881-885.
doi: 10.1126/science.1247749 pmid: 24505133
[23]   Edeling M A, Diamond M S, Fremont D H . Structural basis of flavivirus ns1 assembly and antibody recognition. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:4285-4290.
doi: 10.1073/pnas.1322036111 pmid: 24594604
[24]   Young P R, Hilditch P A, Bletchly C , et al. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein ns1 in the sera of infected patients. Journal of Clinical Microbiology, 2000,38:1053-1057.
[25]   Konishi E, Suzuki T . Ratios of subclinical to clinical japanese encephalitis (je) virus infections in vaccinated populations: Evaluation of an inactivated je vaccine by comparing the ratios with those in unvaccinated populations. Vaccine, 2002,21:98-107.
doi: 10.1016/S0264-410X(02)00433-4 pmid: 12443667
[26]   Chao D Y, Galula J U, Shen W F , et al. Nonstructural protein 1-specific immunoglobulin m and g antibody capture enzyme-linked immunosorbent assays in diagnosis of flaviviral infections in humans. Journal of Clinical Microbiology, 2015,53:557-566.
doi: 10.1128/JCM.02735-14 pmid: 25502522
[27]   Balmaseda A, Stettler K, Medialdea-Carrera R , et al. Antibody-based assay discriminates zika virus infection from other flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017,114:8384-8389.
doi: 10.1073/pnas.1704984114 pmid: 28716913
[28]   Zhang B, Pinsky B A, Ananta J S , et al. Diagnosis of zika virus infection on a nanotechnology platform. Nature Medicine, 2017,23:548-550.
doi: 10.1038/nm.4302 pmid: 28263312
[29]   Lustig Y, Zelena H, Venturi G , et al. Sensitivity and kinetics of an ns1-based zika virus enzyme-linked immunosorbent assay in zika virus-infected travelers from israel, the czech republic, italy, belgium, germany, and chile. Journal of Clinical Microbiology, 2017,55:1894-1901.
doi: 10.1128/JCM.00346-17
[30]   Tsai W Y, Youn H H, Brites C , et al. Distinguishing secondary dengue virus infection from zika virus infection with previous dengue by a combination of 3 simple serological tests. Clinical Infectious Diseases, 2017,65:1829-1836.
doi: 10.1093/cid/cix672 pmid: 29020159
[31]   Lustig Y, Mendelson E, Paran N , et al. Detection of zika virus rna in whole blood of imported zika virus disease cases up to 2 months after symptom onset, israel, december 2015 to april 2016. Eurosurveillance, 2016,21(26): doi: 10.2807/1560-7917.ES.2016.21.26.30269.
doi: 10.2807/1560-7917.ES.2016.21.26.30269 pmid: 27386894
[32]   Kikuti M, Tauro L B , Moreira P S S, et al. Diagnostic performance of commercial igm and igg enzyme-linked immunoassays (elisas) for diagnosis of zika virus infection. Virology Journal, 2018,15:108.
doi: 10.1186/s12985-018-1015-6
[33]   De Ory F , Sánchez-Seco M P, Vázquez A, et al. Comparative evaluation of indirect immunofluorescence and ns-1-based elisa to determine zika virus-specific igm. Viruses, 2018,10(7):E379.
doi: 10.3390/v10070379 pmid: 30029548
[34]   Nurtop E , Villarroel P M S, Pastorino B, et al. Combination of elisa screening and seroneutralisation tests to expedite zika virus seroprevalence studies. Virology Journal, 2018,15:192.
doi: 10.1186/s12985-018-1105-5
[35]   Liu LT, Dalipanda T, Jagilly R , et al. Comparison of two rapid diagnostic tests during a large dengue virus serotype 3 outbreak in the solomon islands in 2013. PloS One, 2018,13:e0202304.
doi: 10.1371/journal.pone.0202304
[36]   Rodriguez-Manzano J, Chia P Y, Yeo TW , et al. Improving dengue diagnostics and management through innovative technology. Current infectious Disease Reports, 2018,20:25.
doi: 10.1007/s11908-018-0646-5 pmid: 29882167
[37]   Stambaugh A, Parks J W, Stott M A , et al. Optofluidic detection of zika nucleic acid and protein biomarkers using multimode interference multiplexing. Biomedical Optics Express, 2018,9:3725-3730.
doi: 10.1364/boe.9.003725
[38]   Bosch I, de Puig H, Hiley M , et al. Rapid antigen tests for dengue virus serotypes and zika virus in patient serum. Science Translational Medicine, 2017, 9(409): eaan1589.
doi: 10.1126/scitranslmed.aan1589 pmid: 28954927
[39]   Tsai W Y, Youn H H, Tyson J , et al. Use of urea wash elisa to distinguish zika and dengue virus infections. Emerging Infectious Diseases, 2018,24:1355-1359.
doi: 10.3201/eid2407.171170
[40]   Gao X, Wen Y, Wang J , et al. Delayed and highly specific antibody response to nonstructural protein 1 (ns1) revealed during natural human zikv infection by ns1-based capture elisa. BMC Infectious Diseases, 2018,18:275.
doi: 10.1186/s12879-018-3173-y pmid: 29898684
[41]   Dai H, Xu Z Z, Wang M , et al. Development of a double-monoclonal antibody sandwich elisa: Tool for chicken interferon-γ detection ex vivo. Canadian Journal of Veterinary Research, 2016,80:134-140.
pmid: 27127340
[42]   Lustig Y, Sofer D, Bucris E D , et al. Surveillance and diagnosis of west nile virus in the face of flavivirus cross-reactivity. Frontiers in Microbiology, 2018,9:2421.
doi: 10.3389/fmicb.2018.02421
[43]   Zhang L, Du X, Chen C , et al. Development and characterization of double-antibody sandwich elisa for detection of zika virus infection. Viruses, 2018,10(634):1-12.
[44]   Lum F-M, Lin C, Susova O Y , et al. A sensitive method for detecting zika virus antigen in patients’ whole-blood specimens as an alternative diagnostic approach. The Journal of Infectious Diseases, 2017,216:182-190.
doi: 10.1093/infdis/jix276
[45]   Rockstroh A, Barzon L, Kumbukgolla W , et al. Dengue virus igm serotyping by elisa with recombinant mutant envelope proteins. Emerging Infectious Diseases, 2019,25:1111-1115.
doi: 10.3201/eid2501.180605
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[3] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[4] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[5] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[6] YANG Xiao-ying,LI Meng,ZHAO Wei,TANG Min,ZHANG Zhi-qian. Preparation and Preliminary Characterization of Anti-α2δ1/CD3 Bispecific Antibody[J]. China Biotechnology, 2020, 40(7): 9-14.
[7] ZHAO Ping,YANG Yan-ping. Patent Situation Analysis of Diagnosis Technology for Coronavirus Infection in Human[J]. China Biotechnology, 2020, 40(1-2): 51-56.
[8] HE Meng,ZHANG Guo-lin,LI Yan,HAN Xue-bo,LIU Hong-peng,LI Xin,QIAN Ling-ling,LIU Kun-mei,GUO Le. Soluble Expression of Recombinant Antigen CagL from Helicobacter pylori Pathogenicity Island and Preparation and Analysis of Anti-CagA Polyclonal Antibody[J]. China Biotechnology, 2020, 40(11): 21-27.
[9] MEI Ya-xian,WANG Yue,LUO Wen-xin. Application of Nano-antibody in the Prevention, Diagnosis and Treatment of Infectious Diseases[J]. China Biotechnology, 2020, 40(10): 24-34.
[10] Lin YANG,Yong-chao LI,Teng-hua ZHANG,Yi-xiao DENG,Jin YANG,Zhi-bo GAO. Comprehensive Evaluation is needed for Precision Diagnosis in Cancer Immunotherapies[J]. China Biotechnology, 2019, 39(2): 62-73.
[11] GUO Le,WANG Shu-e,HE Meng,ZHANG Fan,LIU Hong-peng,LIU Kun-mei. Expression and Immunological Properties of Multivalent Epitope Vaccine CWAE Against Helicobacter pylori[J]. China Biotechnology, 2019, 39(12): 1-8.
[12] Huan XIAO,Zong NING. The Application of Oxidized Graphene Fluorescence in Biomedical Field[J]. China Biotechnology, 2017, 37(12): 84-89.
[13] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.
[14] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[15] DENG Sheng-liang, LI Ping, LIU Hong-bin, CHENG Ma-li, YU Hong-xia, CHEN Gang, YANG Shu-ming. Preparation and Identification of the Specific Antibody against Diethylstilbestrol[J]. China Biotechnology, 2011, 31(06): 106-110.