Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (1): 71-76    DOI: 10.13523/j.cb.20190109
    
Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein
Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE()
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361005,China
Download: HTML   PDF(753KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CRISPR (clustered ordered interspaced short palindromic repeats)/Cas (CRISPR-associated) system is a novel gene editing technology developed in recent years, which is widely used in the biomedical fields. The Cas9 protein and gRNA is essential for the site-specific editing of the genome by CRISPR/Cas9 system. Usually, Cas9 and gRNA are provided by lentivirus infection or plasmid transfection. However, these approaches are likely to cause adverse effects such as immune reactions and uncontrolled insertion of gene fragments, and limits the application of CRISPR/Cas9 systems. The strategy of RNP transduction based on in vitro assembly of Cas9 and gRNA developed in recent years has attracted wide attention because of its advantages such as rapid, safe and low off-target effect. The way of transduction of Cas9 RNP and its application are summarized, and its current problems are discussed in order to provide basis for the further development of CRISPR/Cas9 technology and lay a foundation for its application.



Key wordsCRISPR/Cas9      Ribonucleoprotein      CPP-RNP     
Received: 20 August 2018      Published: 28 February 2019
ZTFLH:  Q78  
Corresponding Authors: Sheng-xiang GE     E-mail: sxge@xmu.edu.cn
Cite this article:

Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE. Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein. China Biotechnology, 2019, 39(1): 71-76.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190109     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I1/71

Fig.1 The assembly and mechanism of Cas9 RNP
项目 质粒/病毒 体外转录Cas9 mRNA及gRNA RNP 参考文献
编辑效率 ++ ++ +++ [19]
插入突变 +++ - - [13]
免疫性 +++ ++ + [14]
脱靶率 +++ ++ + [18]
组分胞内表达时间 >12h >2h - [18]
组分稳定性 +++ + ++ [15,17]
Table 1 Comparison of gene editing in different formats of CRISPR/Cas9
项目 物理转导 化学转导 纳米载体介导 细胞穿膜肽介导 参考文献
生理伤害 [24,40]
主动靶向性 无或弱 [19,40-41]
借助仪器 [40]
转染试剂使用 无或需要 需要 无或需要 [40]
转导效率 [19,31]
血清耐受性 [19]
细胞兼容性 [39]
Table 2 Comparison of different transduction delivery system of RNP
Fig.2 The diagram of gene editing of CPP-Cas9 RNP complex
[1]   Ishino Y, Shinagawa H, Makino K , et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987,169(12):5429-5433.
doi: 10.1109/TNS.1979.4329660 pmid: 3316184
[2]   Qi L S, Larson M H, Gilbert L A , et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013,152(5):1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860
[3]   Jiang W, Bikard D, Cox D , et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013,31(3):233-239.
doi: 10.1038/nbt.2508 pmid: 23360965
[4]   Nekrasov V, Staskawicz B, Weigel D , et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013,31(8):691-693.
doi: 10.1038/nbt.2655 pmid: 23929340
[5]   Doudna J A, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096.
doi: 10.1126/science.1258096
[6]   Zhang Y, Qin W, Lu X , et al. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 2017,8(1):118.
doi: 10.1038/s41467-017-00175-6 pmid: 28740134
[7]   Suzuki K, Tsunekawa Y, Hernandez-Benitez R , et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016,540(7631):144-149.
doi: 10.1038/nature20565 pmid: 27851729
[8]   Jaganathan D, Ramasamy K, Sellamuthu G , et al. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 2018,9.DOI: 10.3389/fpls.2018.00985.
doi: 10.3389/fpls.2018.00985
[9]   Gai T, Gersbach C A, Barbas C F , 3RD. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013,31(7):397-405.
doi: 10.1016/j.tibtech.2013.04.004 pmid: 3694601
[10]   Chandrasegaran S . Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 2017,3(1):33-41.
doi: 10.18609/cgti.2017.005
[11]   Moscou M J, Bogdanove A J . A simple cipher governs DNA recognition by TAL effectors. Science, 2009,326(5959):1501.
doi: 10.1126/science.1178817
[12]   Bi H, Yang B . Gene editing with TALEN and CRISPR/Cas in rice. Progress in Molecular Biology and Translational Science, 2017,149:81-98.
doi: 10.1016/B978-0-12-385071-3.00012-5 pmid: 21075325
[13]   Woo J W, Kim J, Kwon S I , et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015,33(11):1162-1164.
doi: 10.1038/nbt.3389 pmid: 26479191
[14]   Chen X, Goncalves M A . Engineered viruses as genome editing devices. Molecular Therapy: The Journal of the American Society of Gene Therapy, 2016,24(3):447-457.
doi: 10.1038/mt.2015.164 pmid: 26336974
[15]   Kim S, Kim D, Cho S W , et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 2014,24(6):1012-1019.
doi: 10.1101/gr.171322.113 pmid: 24696461
[16]   Nishimasu H, Ran F A, Hsu P D , et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-949.
doi: 10.1016/j.cell.2014.02.001 pmid: 24529477
[17]   Jinek M, Jiang F, Taylor D W , et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014,343(6176):1247997.
doi: 10.1126/science.1247997 pmid: 4184034
[18]   Bueger A, Lindsay H, Felker A , et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development, 2016,143(11):2025-2037.
doi: 10.1242/dev.134809 pmid: 27130213
[19]   Wang H X, Li M, Lee C M , et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews, 2017,117(15):9874-9906.
doi: 10.1021/acs.chemrev.6b00799 pmid: 28640612
[20]   Schumann K, Lin S, Boyer E , et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(33):10437-10442.
doi: 10.1073/pnas.1512503112 pmid: 26216948
[21]   Meccariello A, Monti S M, Romanelli A , et al. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Scientific Reports, 2017,7(1):10061.
doi: 10.1038/s41598-017-10347-5 pmid: 5577161
[22]   Staahl B T, Benekareddy M, Coulon-Bainier C , et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nature Biotechnology, 2017,35(5):431-434.
doi: 10.1038/nbt.3806 pmid: 28191903
[23]   Lin S, Staahl B T, Alla R K , et al. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014,3(6):e04766.
doi: 10.7554/eLife.04766 pmid: 4383097
[24]   Wang M, Glass Z A, Xu Q . Non-viral delivery of genome-editing nucleases for gene therapy. Gene Therapy, 2017,24(3):144-150.
doi: 10.1038/gt.2016.72 pmid: 27797355
[25]   Zuris J A, Thompson D B, Shu Y , et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 2015,33(1):73-80.
doi: 10.1038/nbt.3081
[26]   Liang X, Potter J, Kumar S , et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 2015,208:44-53.
doi: 10.1016/j.jbiotec.2015.04.024 pmid: 26003884
[27]   Kanchiswamy C N, Malnoy M, Velasco R , et al. Non-GMO genetically edited crop plants. Trends in Biotechnology, 2015,33(9):489-491.
doi: 10.1016/j.tibtech.2015.04.002
[28]   Yue H, Zhou X, Cheng M , et al. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 2018,10(3):1063-1071.
doi: 10.1039/C7NR07999K
[29]   Li L, He Z Y, Wei X W , et al. Challenges in CRISPR/CAS9 delivery: Potential roles of nonviral vectors. Human Gene Therapy, 2015,26(7):452-462.
doi: 10.1089/hum.2015.069 pmid: 26176432
[30]   Glass Z, Lee M, Li Y , et al. Engineering the delivery system for CRISPR-based genome editing. Trends in Biotechnology, 2018,36(2):173-185.
doi: 10.1016/j.tibtech.2017.11.006 pmid: 29305085
[31]   Kesharwani P, Iyer A K . Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discovery Today, 2015,20(5):536-547.
doi: 10.1016/j.drudis.2014.12.012 pmid: 4433832
[32]   Jeong S H, Jang J H, Cho H Y , et al. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Archives of Pharmacal Research, 2018,41:797-814.
doi: 10.1007/s12272-018-1060-0
[33]   Diaz D, Care A, Sunna A . Bioengineering strategies for protein-based nanoparticles. Genes, 2018,9(7):370.
doi: 10.3390/genes9070370
[34]   Sun W, Ji W, Hall J M , et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angewandte Chemie, 2015,54(41):12029-2033.
doi: 10.1002/anie.201506030 pmid: 26310292
[35]   Mout R, Ray M, Yesilbag T G , et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 2017,11(3):2452-2458.
doi: 10.1021/acsnano.6b07600 pmid: 28129503
[36]   Lee K, Conboy M, Park H M , et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2
[37]   Wang M, Alberti K, Varone A , et al. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Advanced Healthcare Materials, 2014,3(9):1398-1403.
doi: 10.1002/adhm.201400039 pmid: 24574196
[38]   Ramakrishna S, Kwaku D A B, Beloor J , et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 2014,24(6):1020-1027.
doi: 10.1101/gr.171264.113
[39]   Jones S W, Christison R, Bundell K , et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. British Journal of Pharmacology, 2005,145(8):1093-1102.
doi: 10.1038/sj.bjp.0706279 pmid: 15937518
[40]   Kaestner L, Scholz A, Lipp P . Conceptual and technical aspects of transfection and gene delivery. Bioorganic &Medicinal Chemistry Letters, 2015,25(6):1171-1176.
doi: 10.1016/j.bmcl.2015.01.018 pmid: 25677659
[41]   Rouet R, Thuma B A, Roy M D , et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. Journal of the American Chemical Society, 2018,140(21):6596-6603.
doi: 10.1021/jacs.8b01551 pmid: 29668265
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[5] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[6] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[7] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[8] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[9] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[10] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[11] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[12] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[13] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[14] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.
[15] Hong-miao DAI,Ye-sheng FU,Ling-qiang ZHANG. Construction of YOD1 Knockout Mice on CRISPR/Cas9 Technology[J]. China Biotechnology, 2018, 38(6): 52-57.