Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (1): 38-45    DOI: 10.13523/j.cb.20190105
    
Homologous Expression and Characterization of Pichia pastoris Kex2
Tong WANG,Yan XU,Xiao-wei YU()
1 Key Laboratory of Industrial Biotechnology of Jiangnan University, Wuxi 214122, China
2 Suqian Industrial Technology Research Institute of Jiangnan University,Suqian 223814, China
Download: HTML   PDF(1659KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Kex2 protease is a precursor-processing protease from yeast. Kex2 protease from Pichia pastoris (PPKex2) was homologous expressed in Pichia pastoris. Then the expression and enzymatic characteristics of PPKex2 were studied and further compared with the Kex2 protease from Saccharomyces cerevisiae (SCKex2) expressed in Pichia pastoris. Firstly, these Kex2 genes were cloned from the genomes of Pichia pastoris and Saccharomyces cerevisiae, inserted into pPIC9K expression vector, and then transformed into Pichia pastoris GS115. The expression of PPKex2 and SCKex2 were induced by methanol and purified with anion exchange chromatography (Q-FF). Finally, the enzymatic characteristics of these Kex2 protease were characterized. The specific enzyme activity of PPKex2 in the supernatant was seven times higher than that of SCKex2. Enzymatic characterization showed that PPKex2 was similar to SCKex2 and had the optimal activity at pH 8.0-9.0 and 37℃. In terms of stability, PPKex2 was most stable at pH 7.0. PPKex2 was more stable than SCKex2 in alkaline pH and less stable than SCKex2 in acidic pH. Meanwhile, the thermostability of PPKex2 is lower compared with that of SCKex2. The kinetic analysis showed that the kcat and kcat/Km of PPKex2 was 4.8- and 3.3-fold higher than that of SCKex2, respectively. The first time report the expression and enzymatic characteristics of PPKex2 homologous expressed in Pichia pastoris, which shows potential application in the future.



Key wordsKex2      Pichia pastoris      Homologous expression      Enzymatic characteristics     
Received: 17 August 2018      Published: 28 February 2019
ZTFLH:  Q814  
Corresponding Authors: Xiao-wei YU     E-mail: bioyuxw@aliyun.com
Cite this article:

Tong WANG,Yan XU,Xiao-wei YU. Homologous Expression and Characterization of Pichia pastoris Kex2. China Biotechnology, 2019, 39(1): 38-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190105     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I1/38

Fig.1 Alignment of amino acid sequences for the PPKex2 and SCKex2 Identical amino acid residues were highlighted in dark blue,the predicted secondary structure of PPKex2 above the sequence
Fig.2 Plasmid map of pPIC9K-PPKex2 and pPIC9K-SCKex2
Fig.3 SDS-PAGE of the supernatant of PPKex2 and SCKex2 at different induction time
Fig.4 SDS-PAGE analysis of the purified PPKex2 and SCKex2
Fig.5 The optimal pH and temperature of PPKex2 and SCKex2 (a)The optimal pH of PPKex2 and SCKex2 (b) The initial reaction rate of PPKex2 and SCKex2 at different temperature with method 1 (c) The optimal temperature of PPKex2 and SCKex2 with method 2
Fig.6 The pH- stability and thermostability of PPKex2 and SCKex2 (a)The pH-stability of PPKex2 and SCKex2 (b) The thermostability of PPKex2 (c) The thermostability of SCKex2
Strain Km(mmol/L) kcat(s-1) kcat/Km [L/(mmol·s)]
PPKex2 0.027 58 1.16 42.06
SCKex2 0.018 56 0.24 12.93
Table 1 The kinetic constant of PPKex2 and SCKex2
[1]   David J, Anthony B, Lindley B , et al. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-a-factor. Cell, 1984,37(3):1075-1089.
doi: 10.1016/0092-8674(84)90442-2 pmid: 6430565
[2]   Mizuno K, Nakamura T, Ohshima T , et al. Yeast Kex2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem Biophys Res Commun, 1988,156(1):246-254.
doi: 10.1016/S0006-291X(88)80832-5 pmid: 2845974
[3]   Fuller R S, Brake A, Thorner J . Yeast prohormone processing enzyme (Kex2 gene product) is a Ca 2+-dependent serine protease . Proc Natl Acad Sci USA, 1989,86(5):1434-1438.
doi: 10.1073/pnas.86.5.1434
[4]   Sreenivas S, Krishnaiah S M, Govindappa N , et al. Enhancement in production of recombinant two-chain insulin glargine by over-expression of Kex2 protease in Pichia pastoris. Appl Microbiol Biotechnol, 2015,99(1):327-336.
doi: 10.1007/s00253-014-6052-5 pmid: 25239036
[5]   Cunningham K W, Wickner W T . Yeast Kex2 protease and mannosyltransferase I are localized to distinct compartments of the secretory pathway. Yeast, 1989,5(1):25-33.
doi: 10.1002/yea.320050105 pmid: 2648696
[6]   Staniszewska M, Bondaryk M, Kazek M , et al. Effect of serine protease Kex2 on Candida albicans virulence under halogenated methyl sulfones. Future Microbiol, 2017,12(4):285-306.
doi: 10.2217/fmb-2016-0141 pmid: 28287299
[7]   Antunes A A, Jesus L O P, Manfredi M A , et al. Thermodynamic analysis of Kex2 activity: The acylation and deacylation steps are potassium- and substrate-dependent. Biophys Chem, 2018,235:29-39.
doi: 10.1016/j.bpc.2017.11.007
[8]   冯兴军, 李静, 宋雪莹 , 等. 抗菌肽FAPs在毕赤酵母中的重组表达研究. 东北农业大学学报, 2013,44(9):68-72.
doi: 10.3969/j.issn.1005-9369.2013.09.013
[8]   Feng X J, Li J, Song X Y , et al. Study on recombinant expression of antimicrobial peptides FAPs in Pichia pastoris. Journal of Northeast Agricultural University, 2013,44(9):68-72.
doi: 10.3969/j.issn.1005-9369.2013.09.013
[9]   Thomas G, Thorne B A, Thomas L , et al. Yeast Kex2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science, 1988,241(4862):226-230.
doi: 10.1126/science.3291117 pmid: 3291117
[10]   Brenner C, Fuller R S . Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci USA, 1992,89(3):922-926.
doi: 10.1073/pnas.89.3.922 pmid: 1736307
[11]   Holyoak T, Wilson M A, Fenn T D , et al. 2.4 A resolution crystal structure of the prototypical hormone -processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry, 2003,42(22):6709-6718.
doi: 10.1021/bi034434t
[12]   刘颖颖, 王之可, 李素霞 . Kex2蛋白酶在毕赤酵母中的表达、纯化和性质研究. 中国生化药物杂志, 2015,35(1):37-42.
[12]   Liu Y Y, Wang Z K, Li S X . Expression, purification and properties of recombinant Kex2 in Pichia pastoris. Chinese Journal of Biochemical Pharmaceutics, 2015,35(1):37-42.
[13]   Brennan S O, Peach R J . Calcium-dependent Kex2-like protease found in hepatic secretory vesicles converts proalbumin to albumin. FEBS Lett, 1988,229(1):167-170.
doi: 10.1016/0014-5793(88)80819-6 pmid: 3278932
[14]   Bader O, Schaller M, Klein S , et al. The Kex2 gene of Candida glabrata is required for cell surface integrity. Mol Microbiol, 2001,41(6):1431-1444.
doi: 10.1046/j.1365-2958.2001.02614.x pmid: 11580846
[15]   Bader O, Krauke Y, Hube B . Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol, 2008,8:116.
doi: 10.1186/1471-2180-8-116 pmid: 18625069
[16]   Wheatley JL, Holyoak T . Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2. Proc Natl Acad Sci USA, 2007,104(16):6626-6631.
doi: 10.1073/pnas.0701983104 pmid: 17426142
[17]   Vogl T, Sturmberger L, Kickenweiz T , et al. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol, 2016,5(2):172-186.
doi: 10.1021/acssynbio.5b00199 pmid: 26592304
[18]   Fang C, Wang Q, Selvaraj J N , et al. High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration. Sci Rep, 2017,7(1):8747.
doi: 10.1038/s41598-017-08647-x pmid: 28821784
[19]   Fang Z, Xu L, Pan D , et al. Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. J Ind Microbiol Biotechnol, 2014,41(10):1541-1551.
doi: 10.1007/s10295-014-1491-7 pmid: 25074457
[1] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[2] ZHANG Wen-yu,WEI Dong-sheng,QIAN Jiang-chao. Effects of Co-expression of PDI1, MDH1 and HAC1 Gene on Secretory Expression of Recombinant Glucose Oxidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 24-33.
[3] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[4] Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris[J]. China Biotechnology, 2018, 38(5): 56-65.
[5] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[6] ZHANG Xi-xuan, LI Ye, WANG Ya-hang, DU Kang-long, ZHANG Zhen, RUAN Hai-hua. Expression, Purification and Enzymatic Characterization of ColR75E Collagenase of Bacillus cereus R75E[J]. China Biotechnology, 2015, 35(10): 44-52.
[7] LIU Lin, XU Yan, CAI Chun-mei, LI Jing, CAI Yu-mei. Expression, Purification and Enzymatic Characteristics of Human Hex D in E.coli[J]. China Biotechnology, 2012, 32(09): 28-33.
[8] ZHOU Ai-Ping, CHEN Yan-Jiong, LI Wei, ZHANG Xu-Yan, XU Ji-Ru. Homologous Expression of M. Tuberculosis DnaA Protein in M. smegmatis[J]. China Biotechnology, 2010, 30(08): 72-75.
[9] Bi-hong SHI. Strategies for prompting the production of proteins in Aspergillus oryzae[J]. China Biotechnology, 2009, 29(01): 111-115.