Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 99-112    DOI: 10.13523/j.cb.20181213
Orginal Article     
Engineering P450 for Specific Oxidation of Steroids
CHANG Qing-na1,2,3,YAO Ming-dong1,2,3,**(),WANG Ying1,2,XIAO Wen-hai1,2,YUAN Ying-jin1,2
1 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
2 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(18822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As the second largest class of drugs in the world, steroidal drugs have important pharmacological activity such as anti-inflammatory, anti-allergic and endocrine regulation. Effective and specific oxidizing steroid nucleus by P450 is the key step to obtain pharmacological activity. As known, electron transport efficiency and catalytic specificity are important factors limiting P450 application, resulting in the low yield of target products and serious accumulation of by-products. Here, recent advances in the methodological strategy of engineering P450 were critically reviewed to improve the catalytic efficiency and specificity of steroidal oxidation. And it was also prospected the outlook on how to design and optimize steroidal P450 in the future.



Key wordsSteroids      P450 monooxygenase      Electron transport      Catalytic specificity     
Received: 17 August 2018      Published: 10 January 2019
ZTFLH:  Q819  
Corresponding Authors: Ming-dong YAO     E-mail: 1982@163.com
Cite this article:

CHANG Qing-na,YAO Ming-dong,WANG Ying,XIAO Wen-hai,YUAN Ying-jin. Engineering P450 for Specific Oxidation of Steroids. China Biotechnology, 2018, 38(12): 99-112.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181213     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/99

Fig.1 Typical steroidal oxidation and the corresponding P450 monooxygenase
Fig.2 Engineering strategy of P450 catalytic system
Fig.3 Strategies for improving the efficiency of P450 electron transport
工程化手段 P450单加氧酶 还原蛋白/还原酶 催化反应 反应场所 效果 参考文献
异源氧化还原酶适配 CYP260B1(So ce56) Adx(Bovine)Fpr
(E.coli)
11脱氧皮质酮→1/9/11位羟化 大肠杆菌 C9位羟化效果优于天然氧还伴侣 [25]
CYP21A2_Bo Etp1fd/Arh1
(S.pombe)
medrane→premedrol 大肠杆菌 C21位羟化能力提高1.92倍 [33]
CYP154C5
(N.farcinica)
Pdx/PdR(P.putida) 孕烯醇酮→16位羟化
睾酮→16位羟化
大肠杆菌 孕烯醇酮的转化速率高于睾酮 [21]
CYP27_Ra CPR(S.cerevisiae) 5β-胆甾烷-3α,7α,12α-三醇→27位羟化 酿酒酵母 C27位羟化能力提高5倍 [32]
CYP17_Hu
CYP21_Hu
CPR(A.majus
H.sapiensS.pombe)
孕酮→17位羟化
孕酮→21位羟化
裂殖酵母 CPR(S.pombe)显示出最高活性 [26]
补充氧化还原力 CYP105A1
(S.griseolus)
Fdx/FdR(Spinach)20∶1
2∶1
VD2→25位羟化 大肠杆菌 Fdx/FdR 20∶1的催化活性更高 [22]
CYP11B1_Hu Adx(Bovine)
表达三个拷贝数
11脱氧皮质醇→11/14位羟化 大肠杆菌 11位羟化能力提高30% [34]
CYP3A_Hu CPR(马)/Cyt-b5=
4∶1、1∶1、2∶1
睾酮→26位羟化 昆虫细胞 过表达CPR使6羟基睾酮产量远高于2羟基睾酮 [35]
融合表达 CYP130(Mtb) CPR(B.megaterium) 右美沙芬 大肠杆菌 催化活性提高6% [41]
CYP106A2
(B.megaterium)
YkuN(B. subtilis)/
FpR(E.coli)
孕酮→6位羟化 体外转化 催化速率为未融合的35.1% [44]
工程化手段 P450单加氧酶 还原蛋白/还原酶 催化反应 反应场所 效果 参考文献
CYP21A1_Bo YkuN(B. subtilis)/FpR(E.coli) 孕酮→21位羟化 体外转化 催化速率为未融合的50.0% [44]
CYP11A1_Hu Adx(Human) 胆固醇→11位羟化 体外转化 催化常数远低于未融合 [45]
CYP101A1
(P. putida)
PdR(P. putida)
游离的氧还蛋白 (PdX)
樟脑→5位羟基化 大肠杆菌 催化活性提高2倍 [42]
Table 1 Examples of adjusting the electron transport efficiency of P450
Fig.4 Strategies for improving P450 catalytic specificity
设计策略 P450单加氧酶 催化反应 工程化改造 效果 参考文献
调整底物与活性中心亚铁血红素的相对位置 P450BM3 - R47L/E64G/F81I/F87V/E143G/L188Q/E267V(非理性设计) 由不能催化17β-雌二醇(E2)到可催化生成2-OH-E2 [49][50]
CYP11B1 11脱氧皮质醇→11/14位羟基化 L271M(非理性设计) 11位羟化选择性提高23% [34]
CYP11B1 11脱氧皮质醇→11/14位羟基化 F381A/L382S(半理性设计:酶与底物复合体结构的分析) 11位羟化选择性提高1倍 [33]
CYP106A2 孕酮→6羟孕酮、9羟孕酮、11羟孕酮、15羟孕酮 F165L / A395E / G397V
A243S
T89N / A395I
(半理性设计:酶与底物复合体结构的分析)
9位羟化选择性提高10倍
6位羟化选择性提高10倍
11位羟化选择性提高3倍
[15]
调整底物在催化活性中心的空间取向 CYP260A1 孕酮(PROG)→1/17位羟基化 S276N
S276I
(半理性设计:酶与底物复合体结构的分析)
1位羟化选择性提高58%
17位羟化选择性提高64%
[51]
CYP17A1 17α-羟孕酮→雄烯二酮 N202S(理性设计:同工酶蛋白序列对比) 转化率提高1倍 [52]
CYP260B1 11脱氧皮质醇→1/9位羟基化 T224A(理性设计:酶与底物复合体结构的分析) 9位羟化选择性提高15% [26]
调整底物与活性中心亚铁血红素间的空间位阻 CYP17A1 孕酮→16/17位羟化 A105L(理性设计:18种同工酶序列对比) 17位羟化选择性提高1.25倍 [53]
CYP3A4 孕酮→2/6位羟基化、少量未检测副产物 I301F/I369F/L482F(理性设计:氨基酸大小) 2/6位羟化能力趋于平衡,其他副产物几乎为零 [55]
Table 2 Examples of improving the catalytic specificity of P450
[1]   曹飞飞, 范永仙, 陈小龙 . 细胞色素P450酶系介导的甾体羟化反应及其在分子水平上的研究进展. 国外医药(抗生素分册), 2013,34(4):149-152.
[1]   Cao F F, Fan Y X, Chen X L . Cytochrome P450 systerms mediated hydroxylation in steroids and the development of P450 systerms gene. World Notes on Antibiotics, 2013,34(4):149-152.
[2]   胡海峰, 李晓敦, 朱宝泉 . 微生物甾体羟化技术及其应用. 国外医药(抗生素分册), 2006,27(2):76-78.
[2]   Hu H F, Li X D, Zhu B Q . The steroid hydroxylation technology of microbial and its application. World Notes on Antibiotics, 2006,27(2):76-78.
[3]   Egorova O V, Gulevskaya S A, Puntus I F , et al. Production of androstenedione using mutants of Mycobacterium sp. Journal of Chemical Technology & Biotechnology, 2002,77(2):141-147.
[4]   Wrońska N, Brzostek A, Szewczyk R , et al. The role of fadD19 and echA19 in sterol side chain degradation by Mycobacterium smegmatis. Molecules, 2016,21(5):598.
[5]   叶丽, 周珮 . 微生物甾体羟化酶及羟化反应机理研究//全国生化与生物技术药物学术年会. 吉林: 中国药学会, 2008: 262-265.
[5]   Ye L, Zhou P . Researching on mechanism of microbial steroid hydroxylase and hydroxylation//National Academic Conference on Biochemical and Biotechnological Drugs. Jilin: Chinese Pharmaceutical Association, 2008: 262-265.
[6]   Vanegas K G, Larsen A B, Eichenberger M , et al. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae. Microbial Cell Factories, 2018,17(1):107.
[7]   王鸿, 周峰, 吴祺豪 , 等, 甾体类化合物生物转化的研究进展. 浙江工业大学学报, 2015,43(5):556-561.
[7]   Wang H, Zhou F, Wu Q H , et al. Recent advances in steroid biotransformation. Journal of Zhejiang Uinversity of Technology, 2015,43(5):556-561.
[8]   Petri c ˙ ? , Hakki T, Bernhardt R , et al. Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. Journal of Biotechnology, 2010,150(3):428-437.
[9]   Abdulmughni A, Józwik I K, Putkaradze N , et al. Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase. Journal of Biotechnology, 2017,243:38-47.
doi: 10.1016/j.jbiotec.2016.12.023
[10]   柯霞, 孙骏, 郑裕国 . P450酶系中高效电子传递链的构建及应用. 生命的化学, 2015,35(6):733-740.
[10]   Ke X, Sun J, Zheng Y G . Construction and application of the high efficient electron transfer chain for cytochrome P450. Chemistry of Life, 2015,35(6):733-740.
[11]   Li S, Li Y, Smolke C D . Strategies for microbial synthesis of high-value phytochemicals. Nature Chemistry, 2018,10(4):395-404.
doi: 10.1038/s41557-018-0013-z pmid: 29568052
[12]   Nikolaus J, Nguyen K T, Virus C , et al. Engineering of CYP106A2 for steroid 9α- and 6β-hydroxylation. Steroids, 2017,120:41-48.
doi: 10.1016/j.steroids.2017.01.005
[13]   Ehrhardt M, Gerber A, Hannemann F , et al. Expression of human CYP27A1 in B. megaterium for the efficient hydroxylation of cholesterol, vitamin D3 and 7-dehydrocholesterol. Journal of Biotechnology, 2016,218:34-40.
doi: 10.1016/j.jbiotec.2015.11.021 pmid: 26638999
[14]   Hausjell J, Halbwirth H , Spadiut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories.Bioscience Reports, 2018, 38(2): BSR20171290.
doi: 10.1042/BSR20171290 pmid: 29436484
[15]   Zelasko S, Palaria A, Das A . Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. Protein Expression and Purification, 2013,92(1):77-87.
doi: 10.1016/j.pep.2013.07.017 pmid: 23973802
[16]   Omura T, Gotoh O . Evolutionary origin of mitochondrial cytochrome P450. The Journal of Biochemistry, 2017,161(5):399-407.
doi: 10.1093/jb/mvx011 pmid: 28338801
[17]   Omura T . Structural diversity of cytochrome P450 enzyme system. The Journal of Biochemistry, 2010,147(3):297-306.
doi: 10.1093/jb/mvq001 pmid: 20068028
[18]   Bakkes P J, Biemann S, Bokel A , et al. Design and improvement of artificial redox modules by molecular fusion of flavodoxin and flavodoxin reductase from Escherichia coli. Scientific Reports, 2015,5:12158.
doi: 10.1038/srep12158 pmid: 4503991
[19]   Hannemann F, Virus C, Bernhardt R . Design of an Escherichia coli system for whole cell mediated steroid synthesis and molecular evolution of steroid hydroxylases. Journal of Biotechnology, 2006,124(1):172-181.
doi: 10.1016/j.jbiotec.2006.01.009 pmid: 16504331
[20]   Bracco P, Janssen D B, Schallmey A , et al. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microbial Cell Factories, 2013,12(1):95.
doi: 10.1186/1475-2859-12-95 pmid: 24134652
[21]   Sawada N, Sakaki T, Yoneda S , et al. Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochemical and Biophysical Research Communications, 2004,320(1):156-164.
doi: 10.1016/j.bbrc.2004.05.140 pmid: 15207715
[22]   Schiffler B, Bureik M, Reinle W , et al. The adrenodoxin-like ferredoxin of Schizosaccharomyces pombe mitochondria. Journal of Inorganic Biochemistry, 2004,98(7):1229-1237.
[23]   Bakkes P J, Riehm J L, Sagadin T , et al. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Scientific Reports, 2017,7(1):9570.
doi: 10.1038/s41598-017-10075-w pmid: 28852040
[24]   Litzenburger M, Bernhardt R . CYP260B1 acts as 9α-hydroxylase for 11-deoxycorticosterone. Steroids, 2017,127:40-45.
doi: 10.1016/j.steroids.2017.08.006 pmid: 28827071
[25]   Neunzig I, Widjaja M, Peters F T , et al. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Applied Biochemistry and Biotechnology, 2013,170(7):1751-1766.
doi: 10.1007/s12010-013-0303-2 pmid: 23737303
[26]   Chang J J, Thia C, Lin H Y , et al. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresource Technology, 2015,184:2-8.
doi: 10.1016/j.biortech.2014.11.097 pmid: 25537137
[27]   Ding M Z, Yan H F, Li L F , et al. Biosynthesis of taxadiene in Saccharomyces cerevisiae: selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One, 2014,9(10):e109348.
doi: 10.1371/journal.pone.0109348 pmid: 25295588
[28]   Sarria S, Wong B, Martín H G , et al. Microbial synthesis of pinene. ACS Synthetic Biology, 2013,3(7):466-475.
[29]   Xie W, Lv X, Ye L , et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015,30:69-78.
doi: 10.1016/j.ymben.2015.04.009 pmid: 25959020
[30]   Omura T, Gotoh O . Evolutionary origin of mitochondrial cytochrome P450. The Journal of Biochemistry, 2017,161(5):399-407.
doi: 10.1093/jb/mvx011 pmid: 28338801
[31]   Sakaki T, Kominami S, Hayashi K , et al. Molecular engineering study on electron transfer from NADPH-P450 reductase to rat mitochondrial P450c27 in yeast microsomes. Journal of Biological Chemistry, 1996,271(42):26209-26213.
doi: 10.1074/jbc.271.42.26209 pmid: 8824269
[32]   Brixius S, Schiffer L, Hannemann F , et al. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol. Microb Cell Fact, 2015,14(1):135.
doi: 10.1186/s12934-015-0333-2 pmid: 4572648
[33]   Schiffer L, Anderko S, Hobler A , et al. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microbial Cell Factories, 2015,14(1):1-12.
doi: 10.1186/s12934-015-0209-5 pmid: 4347555
[34]   Vimercati S, Büchi M, Zielinski J , et al. Testosterone metabolism of equine single CYPs of the 3A subfamily compared to the human CYP3A4. Toxicology in Vitro, 2017,41:83-91.
doi: 10.1016/j.tiv.2017.02.017 pmid: 28238727
[35]   Sergeev G V, Gilep A A, Usanov S A . The role of cytochrome b5 structural domains in interaction with cytochromes P450. Biochemistry (Mosc), 2014,79(5):406-416.
doi: 10.1134/S0006297914050046 pmid: 24954591
[36]   Duggal R, Liu Y, Gregory M C , et al. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem Biophys Res Commun, 2016,477(2):202-208.
doi: 10.1016/j.bbrc.2016.06.043 pmid: 4935565
[37]   Duggal R, Denisov I G, Sligar S G . Cytochrome b5 enhances androgen synthesis by rapidly reducing the CYP17A1 oxy-complex in the lyase step. FEBS Lett, 2018,592(13):2282-2288.
doi: 10.1002/1873-3468.13153
[38]   Im S C, Waskell L . The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b(5). Archives of Biochemistry & Biophysics, 2011,507(1):144-153.
doi: 10.1016/j.abb.2010.10.023 pmid: 21055385
[39]   Zhang H, Yokom A L, Cheng S , et al. The full-length cytochrome P450 enzyme CYP102A1 dimerizes at its reductase domains and has flexible heme domains for efficient catalysis. The Journal of Biological Chemistry, 2018,293(20):7727-7736.
doi: 10.1074/jbc.RA117.000600 pmid: 29618513
[40]   Ortega U S, Luirink R A, Geerke D P , et al. Engineering a self-sufficient Mycobacterium tuberculosis CYP130 by gene fusion with the reductase-domain of CYP102A1 from Bacillus megaterium. Journal of Inorganic Biochemistry, 2018,180:47-53.
[41]   Johnson E O D, Wong L . Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Catalysis Science & Technology, 2016,6(20):7549-7560.
doi: 10.1039/C6CY01042C pmid: 5609660
[42]   Fisher C W, Shet M S, Caudle D L , et al. High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(22):10817-10821.
doi: 10.1073/pnas.89.22.10817 pmid: 1438282
[43]   Bakkes P J, Riehm J L, Sagadin T , et al. Engineering of versatile redox partner fusions that support monooxygenase activity of functionally diverse cytochrome P450s. Scientific Reports, 2017,7(1):9570.
doi: 10.1038/s41598-017-10075-w pmid: 28852040
[44]   Strushkevich N, Mackenzie F, Cherkesova T , et al. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(25):10139-10143.
doi: 10.1073/pnas.1019441108 pmid: 21636783
[45]   Hirakawa H, Nagamune T . Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. ChemBioChem, 2010,11(11):1517-1520.
doi: 10.1002/cbic.201000226 pmid: 20607777
[46]   O’Reilly E, K?hler V, Flitsch S L , et al. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chemical Communications, 2011,47(9):2490-2501.
doi: 10.1039/c0cc03165h pmid: 21264369
[47]   Meunier B, de Visser S P, Shaik S . Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews, 2004,104(9):3947-3980.
doi: 10.1021/cr020443g pmid: 15352783
[48]   van Vugt-Lussenburg B M A, Stjernschantz E, Lastdrager J , et al. Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. Journal of Medicinal Chemistry, 2007,50(3):455-461.
doi: 10.1021/jm0609061 pmid: 17266197
[49]   Cha G S, Ryu S H, Ahn T , et al. Regioselective hydroxylation of 17β-estradiol by mutants of CYP102A1 from Bacillus megaterium. Biotechnology Letters, 2014,36(12):2501-2506.
doi: 10.1007/s10529-014-1628-9
[50]   Khatri Y, Józwik I K, Ringle M , et al. Structure-based engineering of steroidogenic CYP260A1 for stereo- and regioselective hydroxylation of progesterone. ACS Chemical Biology, 2018,13(4):1021-1028.
doi: 10.1021/acschembio.8b00026 pmid: 29509407
[51]   Gregory M C, Mak P J, Khatri Y , et al. Human P450 CYP17A1: control of substrate preference by asparagine 202. Biochemistry, 2018,57(5):764-771.
doi: 10.1021/acs.biochem.7b01067 pmid: 29283561
[52]   Swart A C, Storbeck K, Swart P . A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17,20 lyase. The Journal of Steroid Biochemistry and Molecular Biology, 2010,119(3-5):112-120.
doi: 10.1016/j.jsbmb.2009.12.014 pmid: 20043997
[53]   陈勇, 王淑珍, 陈依军 . 酶的理性设计. 药物生物技术, 2011,18(6):538-543.
[53]   Chen Y, Wang S Z, Chen Y J . Rational design of enzymes. Pharmaceutical Biotechnology, 2011,18(6):538-543.
[54]   Schiavini P, Cheong K J, Moitessier N , et al. Active site crowding of P450 3A4 as a strategy to alter its selectivity. Chembiochem A European Journal of Chemical Biology, 2016,18(3):248-252.
doi: 10.1002/cbic.201600546 pmid: 27897366
[55]   Cirino P C, Arnold F H . A self-sufficient peroxide-driven hydroxylation biocatalyst. Angewandte Chemie, 2003,42(28):3299-3301.
doi: 10.1002/ange.200351434 pmid: 12876749
[56]   Li Q, Ogawa J, Shimizu S . Critical role of the residue size at position 87 in H2O2-dependent substrate hydroxylation activity and H2O2 inactivation of cytochrome P450BM-3. Biochemical and Biophysical Research Communications, 2001,280(5):1258-1261.
doi: 10.1006/bbrc.2001.4261 pmid: 11162663
[57]   Jensen K, Jensen P E, M?ller B L . Light-driven cytochrome p450 hydroxylations. Acs Chemical Biology, 2011,6(6):533-539.
doi: 10.1021/cb100393j pmid: 21323388
[58]   Shalan H, Kato M, Cheruzel L . Keeping the spotlight on cytochrome P450.Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2017,1866(1):80-87.
doi: 10.1016/j.bbapap.2017.06.002 pmid: 28599858
[59]   Zehentgruber D, Dr?gan C A, Bureik M , et al. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. Journal of Biotechnology, 2010,146(4):179-185.
doi: 10.1016/j.jbiotec.2010.01.019 pmid: 20132843
[60]   Zehentgruber D, Bernhardt R, Bleif R , et al. Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. ChemBioChem, 2010,11(5):713-721.
doi: 10.1002/cbic.200900706 pmid: 20183841
[61]   Schwaneberg U . Entwicklung eines in vitro cytochrome P450 CYP102 (BM-3) enzym-membran-reaktors//Klonierung, fermentation, reinigung und assayentwicklug zur charakterisierung und gerichteten evolution der monooxygenase P450 BM-3 aus Bacillus megaterium. Germany: GCA, 1999: 84-85.
[62]   Szczebara F M, Chandelier C, Villeret C , et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nature Biotechnology, 2003,21(2):143-149.
doi: 10.1038/nbt775 pmid: 12514739
[63]   Ott R G, Athenstaedt K, Hrastnik C , et al. Flux of sterol intermediates in a yeast strain deleted of the lanosterol C-14 demethylase Erg11p. BBA - Molecular and Cell Biology of Lipids, 2005,1735(2):111-118.
[64]   Hammer S K, Avalos J L . Harnessing yeast organelles for metabolic engineering. Nature Chemical Biology, 2017,13(8):823-832.
doi: 10.1038/nchembio.2429 pmid: 28853733
[65]   梅兴国, 黄伟 . 红豆杉细胞两相培养生产紫杉醇的研究. 生物技术, 2000,10(1):10-12.
[65]   Mei X G, Huang W . Production of taxol by two-phase culture Taxus cell suspension. Biotechnology, 2000,10(1):10-12.
[66]   龙泉鑫, 周培富, 吴宗辉 , 等. 微生物药物外排泵及其抑制剂研究. 药学学报, 2008,43(11):1082-1088.
[66]   Long Q X, Zhou P F, Wu Z H , et al. Advances in the study of the microbialefflux pumps and its inhibitors development. Acta Pharmaceutica Sinica, 2008,43(11):1082-1088.
[1] ZHANG Yong-ming, CUI Zhi-feng, HIRASAWA Ei-ji, WU Hai-xia, LI Guo-long. Study on Thermal Stability and Catalytic Specificity of Monoamine Oxidase in Oat Seedlings[J]. China Biotechnology, 2012, 32(07): 107-112.