Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 14-20    DOI: 10.13523/j.cb.20181203
Orginal Article     
The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein
HE Ya-nan1,2,SUN Yu-liang1,2,REN Ya-kun2,LIANG Sheng-ying2,YANG Fen2,3,LIU Yan-li1,2,**(),LIN Jun-tang1,2,3
1 College of Life Science and Technology,Xinxiang Medical University, Xinxiang 453003,China
2 Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003,China
3 College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003,China
Download: HTML   PDF(1083KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The aim of this study is to construct the genetically engineered bacteria with full-length fusion gene of staphylococcal enterotoxin-like K (SElK) and green fluorescent protein (GFP), and further examine the biological activity of SElK-GFP fusion protein.Methods: SElK-GFP fusion gene was obtained by overlap PCR and cloned into the plasmid of pET28a. After being confirmed by colony PCR, double digestion and sequence, the successfully constructed pET28a-SElK-GFP was transformed into E.coli BL21, and the SElK-GFP was purified by Ni +-affinity magnetic beads. The proliferation of mouse derived spleen lymphocytes stimulated with SElK-GFP was examined by MTT assay; the concentration of IL-2 and IFN-γ in serum of the mice treated with SElK-GFP was examined by ELISA kits. Results: The SElK-GFP-producing strain was successfully constructed, and the green fluorescence can be observed in high purity SElK-GFP fusion protein. MTT assay showed that SElK-GFP could significantly stimulate the proliferation of spleen lymphocytes in a dose-dependent manner, and the concentration of IL-2 and IFN-γ in serum of the mice treated with SElK-GFP was significantly increased.Conclusion: SElK-GFP not only retained the green fluorescence signal of GFP, but also exhibited SElK superantgen activity, and provide a promising tool for the further study of the biological activity of SElK.



Key wordsStaphylococcal enterotoxin-like K      Superantigen      T lymphocyte      Prokaryotic expression     
Received: 06 June 2018      Published: 10 January 2019
ZTFLH:  Q78  
Corresponding Authors: Yan-li LIU     E-mail: liuyanli198512@163.com
Cite this article:

HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein. China Biotechnology, 2018, 38(12): 14-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181203     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/14

基因 引物 (5'- 3')
SEIK Sense CGG AAT TCC AAG GTG ATA TAG GAA
EcoR I
Antisense AGA GCC ACC TCC GCC TGA ACC GCC TCC ACC TAT CGT
The gene encoding linker peptide
TTC TTT ATA AGA
GFP Sense GGT GGA GGC GGT TCA GGC GGA GGT GGC TCT ATG GTG
The gene encoding linker peptide
AGC AAG GGC GAG GA
Antisense TCG CTC GAG TTA CTT GTA CAG CTC GTC CAT GCC
Xho I Stop codon
SEIK-GFP Sense SEIK- Sense
Antisense GFP- Antisense
Table 1 The PCR primers of SElK, GFP and SElK-GFP gene
Fig.1 The construction and identification of pET-28a-SElK-GFP (1)Map of constructing SElK-GFP fusion gene by Overlap PCR (b) PCR products of SElK (lane 1 and 2), GFP (lane 3 and 4) and SElK-GFP fusion gene (lane 5 and 6) were analyzed by electrophoresis (c) The results of colony PCR (lane 1and 2) and double digestion of pET-28a-SElK-GFP by EcoR I and Xho I (lane 3 and 4)
Fig.2 Detection of green fluorescence during the expression of SElK-GFP (a) The expression of SElK-GFP induced with IPTG at 30℃ for 8h (b) Quantification of GFP fluorescence
Fig.3 The purification of SElK-GFP and the proliferation index of splenic lymphocytes stimulated by SElK-GFP in vitro (a) The expression of SElK-GFP induced with 1mmol/L IPTG at 30℃ for 8h. The samples were taken from 0h and 8h throughout the inducible expression period and were analyzed by the SDS-PAGE M: Protein molecular mass standards (b) Murine splenic lymphocytes were incubated with different concentrations of SElK, GFP and SElK-GFP for 48h, and the proliferation capacity was determined by MTT assay. The red dashed line indicated the PI of the BSA treated group (* P<0.05; ** P<0.01; NS: no significant difference)
Fig.4 Concentration of IL-2 and IFN-γ in serum of the mice treated with SElK-GFP (* P<0.05; ** P<0.01)
[1]   Spaulding A R, Salgado-Pabón W, Kohler P L , et al. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev, 2013,26(3):422-447.
doi: 10.1128/CMR.00104-12
[2]   Sundberg E J, Li Y, Mariuzza R A . So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr Opin Immunol, 2002,14(1):36-44.
doi: 10.1016/S0952-7915(01)00296-5 pmid: 11790531
[3]   Müller-Alouf H, Carnoy C, Simonet M , et al. Superantigen bacterial toxins: state of the art. Toxicon, 2001,39(11):1691-1701.
doi: 10.1016/S0041-0101(01)00156-8 pmid: 11595632
[4]   Omoe K, Imanishi K, Hu D L , et al. Biological properties of staphylococcal enterotoxin-like toxin type R. Infect Immun, 2004,72(6):3664-3667.
[5]   Fernández M M, Bhattacharya S ,De Marzi M C ,et al.Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vβ 8.2. Proteins, 2007,68(1):389-402.
doi: 10.1002/prot.21388 pmid: 17427250
[6]   Ono H K, Omoe K, Imanishi K , et al. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun, 2008,76(11):4999-5005.
doi: 10.1128/IAI.00045-08 pmid: 2573384
[7]   Zhao Y, Zhu A, Tang J , et al. Identification and measurement of staphylococcal enterotoxin M (SEM) from Staphylococcus aureus isolate associated with staphylococcal food poisoning. Lett Appl Microbiol, 2017,65(1):27-34.
doi: 10.1111/lam.12751 pmid: 28444877
[8]   Ragin M J, Sahu N, August A . Differential regulation of cytokine production by CD1d-restricted NKT cells in response to superantigen staphylococcal enterotoxin B exposure. Infect Immun, 2006,74(1):282-288.
doi: 10.1128/IAI.74.1.282-288.2006 pmid: 16368982
[9]   Liu Y, Xu M, Su Z , et al. Increased T-cell stimulating activity by mutated SEC2 correlates with its improved antitumour potency. Lett Appl Microbiol, 2012,55(5):362-369.
doi: 10.1111/j.1472-765X.2012.03303.x pmid: 22925007
[10]   Zhou J, Liu L, Xu M , et al. T-cell proliferation and antitumour activities of a truncated mutant of staphylococcal enterotoxin C2 with decreased cytokine secretion. J Med Microbiol, 2013,62(3):451-456.
doi: 10.1099/jmm.0.047472-0 pmid: 23180479
[11]   Mundi?ano J, Berguer P M, Cabrera G , et al. Superantigens increase the survival of mice bearing T cell lymphomas by inducing apoptosis of neoplastic cells. PloS One, 2010,5(12):e15694.
doi: 10.1371/journal.pone.0015694 pmid: 3008744
[12]   Xu M, Wang X, Cai Y , et al. An engineered superantigen SEC2 exhibits promising antitumor activity and low toxicity. Cancer Immunol Immun, 2011,60(5):705-713.
doi: 10.1007/s00262-011-0986-6 pmid: 21331815
[13]   Sun J, Zhao L, Teng L , et al. Solid tumor-targeted infiltrating cytotoxic T lymphocytes retained by a superantigen fusion protein. PLoS One, 2011,6(2):e16642.
doi: 10.1371/journal.pone.0016642 pmid: 3032773
[14]   Seo K S, Lee S U, Park Y H , et al. Long-term staphylococcal enterotoxin C1 exposure induces soluble factor-mediated immunosuppression by bovine CD4 + and CD8 + T cells . Infect Immun, 2007,75(1):260-269.
doi: 10.1128/IAI.01358-06 pmid: 1828382
[15]   Salgado-Pabón W, Breshears L, Spaulding A R , et al. Superantigens are critical for Staphylococcus aureus infective endocarditis, sepsis, and acute kidney injury. MBio, 2013,4(4):e00494-13.
doi: 10.1128/mBio.00494-13 pmid: 23963178
[16]   M?rbe U M . Molecular effects of Staphylococcus aureus toxins and their contribution to pathogenesis. Utrecht: Utrecht University, 2013.
[17]   Lina G, Bohach G A, Nair S P , et al. Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis, 2004,189(12):2334-2336.
[18]   Paul M, Donald Y, Heather L , et al. Biochemical and biological properties of staphylococcal enterotoxin K. Infect Immun, 2001,69(1):360-366.
doi: 10.1128/IAI.69.1.360-366.2001 pmid: 11119525
[19]   刘彦礼, 牛荣成, 杨芬 , 等. 金葡菌类肠毒素K原核表达载体构建及其生物学活性分析. 中国生物工程杂志, 2015,35(12):45-50.
[19]   Liu Y L, Niu R C, Yang F , et al. The construction and functional analysis of staphylococcal enterotoxin like K. China Biotechnology, 2015,35(12):45-50.
[20]   Orwin P M, Fitzgerald J R ,Leung D Y M , et al. Characterization of Staphylococcus aureus enterotoxin L. Infect Immun, 2003,71(5):2916-2919.
[21]   Orwin P M ,Leung D Y M,Tripp T J, et al. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry, 2002,41(47):14033-14040.
doi: 10.1021/bi025977q pmid: 12437361
[22]   Omoe K, Hu D L, Ono H K , et al. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect Immun, 2013,81(10):3627-3631.
doi: 10.1128/IAI.00550-13 pmid: 23876808
[23]   Krakauer T . Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins, 2013,5(9):1629-1654.
doi: 10.3390/toxins5091629 pmid: 3798877
[24]   Omoe K, Nunomura W, Kato H , et al. High affinity of interaction between superantigen and T cell receptor Vβ molecules induces a high level and prolonged expansion of superantigen-reactive CD4+ T cells . J Biol Chem, 2010,285(40):30427-30435.
[25]   Fraser J D, Proft T . The bacterial superantigen and superantigen-like proteins. Immunol Rev, 2008,225(1):226-243.
doi: 10.1111/j.1600-065X.2008.00681.x pmid: 18837785
[26]   Malchiodi E L, Eisenstein E, Fields B A , et al. Superantigen binding to a T cell receptor beta chain of known three-dimensional structure. J Exp Med, 1995,182(6):1833-1845.
doi: 10.1084/jem.182.6.1833 pmid: 2192249
[27]   Leder L, Llera A, Lavoie P M , et al. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II. J Exp Med, 1998,187(6):823-833.
doi: 10.1084/jem.187.6.823 pmid: 9500785
[28]   Khandekar S S, Brauer P P, Naylor J W , et al. Affinity and kinetics of the interactions between an αβ T-cell receptor and its superantigen and class II-MHC/peptide ligands. Mol Immunol, 1997,34(6):493-503.
doi: 10.1038/sj.emboj.7601220 pmid: 9307065
[29]   Günther S, Varma A K, Moza B , et al. A novel loop domain in superantigens extends their T cell receptor recognition site. J Mol Biol, 2007,371(1):210-221.
[30]   Xu M K, Zhang C G . Gene expression and function study of fusion immunotoxin anti-Her-2-scFv-SEC2 in Escherichia coli. Appl Microbiol Biot, 2006,70(1):78-84.
doi: 10.1007/s00253-005-0049-z pmid: 16080007
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] HUI Yi-hua,WANG Hai-na,QI Yu-feng,CAO Xue-ling,GUAN Xue-mei,DUAN Jing-jing,DUAN Yi- jun,WANG Yan- feng,SU Wen. Normal Reference Range of Lymphocyte Subsets in Healthy Adults in Shanxi Province[J]. China Biotechnology, 2019, 39(9): 41-49.
[8] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[9] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[10] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[11] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[14] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[15] ZHOU Liang, YE Hao, ZHOU Li, GUAN Wen, LI Jing-jing, GAO Jin, HAN Wei, YU Yan. Prokaryotic Expression and Purification of Bioactive Human CXCL4[J]. China Biotechnology, 2016, 36(1): 7-13.