Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 18-24    DOI: 10.13523/j.cb.20181103
    
Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology
Jing-li WANG1,Zhen-zhen DING3,Hui LIU1,Yan-ting TANG2,***()
1. College of Pharmacy, Nankai University, Tianjin 300071, China
2. Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
3. Dynamiker Biotechnology (Tianjin) Co. Ltd., Tianjin 300467, China
Download: HTML   PDF(1096KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:Based on fluorescence polarization technology, a binding assay targeting the interaction between tomato spotted wilt virus (TSWV) nucleoprotein (NP) and nucleic acid was established and used for drug screening.Methods:The full-length NP DNA amplicon was cloned into the pGEX-6p-1 expression vector, and the construct pGEX-6p-1-NP was transformed into E. coli strain BL(DE3). Recombinant NP protein was purified with a general protocol. A fluorescence polarization assay that is sensitive to inhibitors disrupting TSWV NP/nucleic acid interactions was established. The assay’s DMSO tolerance, incubation time, stability and variability were studied and a pilot drug screening was performed.Results: The recombinant plasmid pGEX-6p-1-NP was successfully constructed and the high quality recombinant NP was purified. A 384-well fluorescence polarization assay targeting TSWV NP and nucleic acid interaction was developed and validated, with a signal-to-noise ratio of 8:1 and a Z factor of 0.82 was obtained, demonstrating the assay is HTS compatible. The assay was used to screen 1 000 compounds in the chemical libraries. After the primary screening, one compound with IC50 of 4.146μmol/L was identified. Conclusion:The fluorescence polarization assay is stable and suitable for the screening inhibitors blocking the interaction between NP and nucleic acids, and the compound provides a reference for the prevention and control of TSWV.



Key wordsTomato spotted wilt virus      Nucleoprotein      Fluorescence polarization      Drug screening     
Received: 05 March 2018      Published: 06 December 2018
ZTFLH:  Q819  
Corresponding Authors: Yan-ting TANG     E-mail: titihere@163.com
Cite this article:

Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology. China Biotechnology, 2018, 38(11): 18-24.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181103     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/18

Fig.1 FITC labeled 25T
Fig.2 The recombinant NP was analyzed by chromatogram and 12% SDS-PAGE(a) Ion exchange chromatogram (b) Size exclusion chromatogram (c) 12% SDS-PAGE
Fig.3 The relativity analysis between probe concentration and fluorescence intensity (a) The linear regression analysis between parallel polarized light intensity and probe concentration (R2=0.992 1) (b) Polarization values at various probe concentrations
Probe (nmol/L) 1 000 500 250 125 62.5 31 15.5 7.7 0
Parallel intensity 45 400 21 327 14 785 7 203 2 961 1 569 772 756 590
mP 32.00 32.33 33.67 43.67 62.00 105.67 204.67 276.33 407.67
Table 1 The average value of fluorescence intensity and polarization values at various probe concentrations
Time(min) 0 10 20 30 40 60 120
Kd(μmol/L) 1.22 1.23 1.28 1.26 1.42 1.32 1.39
Table 2 Kd values at different incubation times
Fig.4 Saturation binding curve of the labeled 25T to NP (a) The polarization value increases with increasing protein concentration (b) The polarization value changes with the increase of protein concentration (logarithmic value)
Time(min) 0 5 10 20 30 60 90 120
IC50 (μmol/L) 5.61 1.31 0.98 0.98 1.03 0.97 0.84 0.80
Table 3 IC50 values at different incubation times
Fig.5 Competitive binding curve by titration with the unlabeled probe 25T at different incubation times, keeping the labeled probe and NP concentration constant
DMSO(%) 0 1 2 3 4 5 6 7 8 9 10
mP 327.00 328.33 320.00 326.67 315.33 325.33 317.67 320.00 321.33 310.00 315.33
Kd 1.04 1.06 ND1) ND ND 1.15 ND ND ND ND 1.12
Table 4 Polarization values and Kd values at vatious DMSO concentrations
Fig.6 DMSO tolerance of the assay (a) Effect of DMSO on the polarization values (b) Effect of DMSO on the Kd
加样顺序 组分 浓度(μmol/L) 体积(μl)
1 NP 2.5 18
2 荧光探针 0.25 1
3 化合物 50 1
总体积20μl
Table 5 The components of the FP Assay
Fig.7 Calculation of Z factor to monitor assay performance, by polarization values of the negative control group and the positive control group
[1]   Li J, Feng Z, Wu J , et al. Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling. Journal of Biological Chemistry, 2015,290(7):3950-3961.
doi: 10.1074/jbc.M114.604678 pmid: 4326804
[2]   Komoda K, Narita M, Yamashita K , et al. The asymmetric trimeric ring structure of the nucleocapsid protein of Tospovirus. Journal of Virology, 2017,91(20):e01002-17.
doi: 10.1128/JVI.01002-17 pmid: 28768868
[3]   Guo Y, Liu B, Ding Z , et al. Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus. Journal of Virology. 2017,91(23):e00892-17.
doi: 10.1128/JVI.00892-17 pmid: 28904194
[4]   Wilson J, Rossi C P, Carboni S , et al. A homogeneous 384-well high-throughput binding assay for a TNF receptor using alphascreen technology. Journal of Biomolecular Screening, 2003,8(5):522-532.
doi: 10.1177/1087057103257804 pmid: 14567779
[5]   Checovich W J, Bolger R E, Burke T , et al. Fluorescence polarization: a new tool for cell and molecular biology. Nature, 1995,375(6528):254-256.
doi: 10.1038/375254a0 pmid: 7746330
[6]   Kakehi K, Oda Y, Kinoshita M , et al. Fluorescence polarization: analysis of carbohydrate-protein interactions. Analytical Biochemistry, 2001,297(2):111-116.
doi: 10.1006/abio.2001.5309 pmid: 11673876
[7]   Moerke N J . Fluorescence polarization (FP) assays for monitoring peptide-protein or nucleic acid-protein binding. Current Protocols in Chemical Biology, 2009,1(1):1-15.
doi: 10.1002/9780470559277.ch090102 pmid: 23839960
[8]   Terpetschnig E, Szmacinski H, Lakowicz J R , et al. Long-lifetime metal-ligand complexes as probes in biophysics and clinical chemistry. Methods in Enzymology, 1997,278(278):295-321.
doi: 10.1016/S0076-6879(97)78016-9
[9]   Burke T J, Loniello K R, Beebe J A , et al. Development and application of fluorescence polarization assays in drug discovery. Combinatorial Chemistry & High Throughput Screening, 2003,6(3):183-194.
doi: 10.2174/138620703106298365 pmid: 12678697
[10]   Jameson D M, Sawyer W H . Fluorescence anisotropy applied to biomolecular interactions. Methods in Enzymology, 1995,246(28):283-300.
doi: 10.1016/0076-6879(95)46014-4
[11]   Hill J J, Royer C A . Fluorescence approaches to study of protein-nucleic acid complexation. Methods in Enzymology, 1997,278(97):390-416.
doi: 10.1016/S0076-6879(97)78021-2
[12]   Roehrl M H, Wang J Y, Wagner G , et al. A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry, 2004, 28; 43(51):16056-16066.
doi: 10.1021/bi048233g pmid: 15610000
[13]   Roehrl M H, Wang J Y, Wagner G , et al. Discovery of small-molecule inhibitors of the NFAT-calcineurin interaction by competitive high-throughput fluorescence polarization screening. Biochemistry, 2004,43(51):16067-16075.
doi: 10.1021/bi048232o
[14]   Zhang J H, Chung T D, Oldenburg K R , et al. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening, 1999,4(2):67-73.
doi: 10.1177/108705719900400206
[15]   Arkin M R, Glicksman M A, Fu H , et al. Inhibition of Protein-Protein Interactions: Non-Cellular Assay Formats// Sittampalam G S, Coussens N P, Nelson H, et al. Assay guidance manual. Bethesda: Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.
[16]   Munson P J, Rodbard D . An exact correction to the “Cheng-Prusoff” correction. Journal of Receptor Research, 1988,8(1-4):533-546.
doi: 10.3109/10799898809049010 pmid: 3385692
[1] Hai-feng PAN,Han YANG,Si-yuan YU,Ting-dong LI,Sheng-xiang GE. Progress in Gene Editing Methods of CRISPR/Cas9 Based on in Vitro Assembly of Ribonucleoprotein[J]. China Biotechnology, 2019, 39(1): 71-76.
[2] LIU Jun-wei, CHANG Rui-heng, HUI Peng, DONG Shi-shang, WANG Jin-feng, SUN Bo, YANG Cheng. Preparation of Anti-ebola Nucleoprotein Antibodies and Establishment of Sandwich ELISA Assay[J]. China Biotechnology, 2017, 37(10): 53-59.
[3] ZHU Yun-peng, WANG Peng, XIA Bo-ran, TANG Yan-ting, WANG Quan. Screening and Inhibition Kinetics of SARS Coronavirus Main Protease Inhibitors[J]. China Biotechnology, 2016, 36(4): 35-42.
[4] MA Lei, ZHU Yuan-mao, CAI Hong, WANG Shu, SHI Hong-fei, LÜ Chuang, DONG XIU-mei, GAO Yu-ran, XUE Fei. Prokaryotic Expression and Preparation of Monoclonal Antibody of the Nucleoprotein of Bovine Respiratory Syncytial Virus (BRSV)[J]. China Biotechnology, 2012, 32(12): 20-24.
[5] SHI Wen-fang, FENG Yue, WEI Da-qiao, XIA Xue-shan. Hepatitis C Virus Targeting Drug and Drug Screening System[J]. China Biotechnology, 2011, 31(11): 95-101.
[6] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[7] . Establish an ELISA Method for Screening Agonists of the Rattus Norvegicus LXRβ[J]. China Biotechnology, 2010, 30(07): 0-0.
[8] XIE Gui-Huang, DIAO Qing-Lan, CHEN Chao-Yin. Application of Pseudovirus Systems on Anti-HIV-1 Drugs Screening and Drug-resistance Analyzing of HIV-1-Variants[J]. China Biotechnology, 2010, 30(03): 95-99.
[9] SHI Ji-Jing, LIU Chao-Ai, JU Kun, YANG Jie-Wei, GAO Meng-Xing, YANG Fan. Establishment of hIL-6 Protein Binding to sIL-6R Model for Screening IL-6 Inhibitors[J]. China Biotechnology, 2009, 29(11): 60-65.
[10] qiu shenghong. The Application of Zebrafish in the Study of the Tumor Antiangiogenesis[J]. China Biotechnology, 2009, 29(10): 98-101.
[11] Long-Ding Liu . The effect of HSVⅠ infection on the expression of hnRNP H2 in human fetal liver cell[J]. China Biotechnology, 2008, 28(6): 18-22.
[12] . Study on A GFP Expression System for Detecting Estrogenic Compounds[J]. China Biotechnology, 2006, 26(10): 24-29.
[13] . Gene Coloning, Expression and Activity Assay of Survivin[J]. China Biotechnology, 2006, 26(05): 54-57.