Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 35-40    DOI: 10.13523/j.cb.20180905
Orginal Article     
The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia
Hong-yuan CHEN1,Hong-yan CHEN1,Chun QIAO2,Jian-yong LI2,Da-ru LU1,**()
1 School of Life Science, Fudan University, Shanghai 200438, China
2 The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital,Key Laboratory of Hematology of Nanjing Medical University, Collaborative Innovation Center for Cancer Personalized Medicine,Nanjing 210029,China
Download: HTML   PDF(1175KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Waldenström’s macroglobulinemia (WM) is a rare, incurable lymphoplasmacytic lymphoma (LPL). Research has showed that MYD88 L265P is commonly detected in patients with WM (>90%). Therefore this mutation could be used as a biomarker for disease diagnosis and differentiation. Current detection methods used at this mutation are of low sensitivity, which limit the clinical utility for early diagnosis. Thus, there is an urgent need for a more sensitive method to fulfill the requirement of early diagnosis. By combining ARMS and clamping PCR together, a novel detection system with higher sensitivity was developed. The limit of detection of the new system was 10 2 copies and the sensitivity was 0.1%. A double-blind trial with 19 clinical samples was conducted and the results completely accorded with the sample information. This new technique has a huge potential in clinical practices, especially early diagnosis, due to its increased accuracy and sensitivity.



Key wordsWaldenström’s macroglobulinemia      MYD88 L265P mutation      Enrichment and detection system     
Received: 02 April 2018      Published: 12 October 2018
Corresponding Authors: Da-ru LU     E-mail: darulu@163.com
Cite this article:

Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia. China Biotechnology, 2018, 38(9): 35-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180905     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/35

类型 标记 序列(5'-3')
上游引物 MYD88-F GGGATATGCTGAACTAAGTTGCCAC
下游引物 MYD88-R GACGTGTCTGTGAAGTTGGCATCTC
内侧上游引物 MYD88-inF GAAGCGACCGATCCCCATCAAG
内侧下游引物 MYD88-inR TGGGGATCGGTCGCTTCTGATG
Table 1 Primers for standard plasmid construction
Fig.1 Schematic diagram
类型 标记 序列(5'-3')
通用上游引物 Common F AATGTGTGCCAGGGGTACTTA
突变型特异性下游引物 MT-R CCTTGTACTTGATGGGGATCG
阻抑子 Blocker CATGGGGATCAGTCGCTTCTG- NH2
Table 2 Sequences of primers and blocker
Fig.2 Limit of detection test
Fig.3 Sensitivity test
[1]   Gertz M A . Waldenström macroglobulinemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol, 2012,87(5):503-510.
doi: 10.1002/ajh.v87.5
[2]   Treon S P, Xu L, Yang G , et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med, 2012,367(9):826-833.
doi: 10.1056/NEJMoa1200710
[3]   Oishi N, Kondo T, Nakazawa T , et al. High prevalence of the MYD88 mutation in testicular lymphoma: Immunohistochemical and genetic analyses. Pathol Int, 2015,65(10):528-535.
doi: 10.1111/pin.12336
[4]   Xu L, Hunter Z R, Yang G , et al. MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood, 2013,121(11):2051-2058.
doi: 10.1182/blood-2012-09-454355
[5]   Mori N, Ohwashi M, Yoshinaga K , et al. L265P mutation of the MYD88 gene Is frequent in Waldenström’s macroglobulinemia and its absence in myeloma. PLoS One, 2013,8(11):e80088.
doi: 10.1371/journal.pone.0080088
[6]   Kawai T, Akira S . The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 2010,11(5):373-384.
doi: 10.1038/ni.1863
[7]   焦国慧, 代红胜, 张灼寒 , 等. MyD88aa155-171功能区缺失对免疫相关细胞共刺激分子和细胞因子表达的影响. 中国生物工程杂志, 2008,28(9):1-6.
[7]   Jiao G H, Dai H S, Zhang Z H , et al. aa155-171 motif deletion of MyD88 attenuates expression of co-stimuatory molecules and cytokines in immune associated-cells. China Biotechnology, 2008,28(9):1-6.
[8]   Varettoni M, Arcaini L, Zibellini S , et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström’s macroglobulinemia and related lymphoid neoplasms. Blood, 2013,121(13):2522-2528.
doi: 10.1182/blood-2012-09-457101
[9]   Gachard N, Parrens M, Soubeyran I , et al. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia, 2013,27(1):183-189.
doi: 10.1038/leu.2012.257
[10]   孟琦, 曹欣欣, 李剑 . MYD88 L265P及CXCR4 WHIM基因突变在华氏巨球蛋白血症中的意义. 中国医学科学院学报, 2017,39(4):578-582.
[10]   Meng Q, Cao X X, Li J . Significances of MYD88 L265P and CXCR^4WHIM mutations in Waldenstrom macroglobulinemia. Acta Academiae Medicinae Sinicae, 2017,39(4):578-582.
[11]   Treon S P, Tripsas C K, Meid K , et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. New England Journal of Medicine, 2015,372(15):1430-1440.
doi: 10.1056/NEJMoa1501548
[12]   Treon S P, Cao Y, Xu L , et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood, 2014,123(18):2791-2796.
doi: 10.1182/blood-2014-01-550905
[13]   Myers M B, Mckinzie P B, Wang Y , et al. ACB-PCR quantification of somatic oncomutation. Methods Mol Biol, 2014,1105(1105):345-363.
doi: 10.1007/978-1-62703-739-6
[14]   Mckinzie P B, Parsons B L . Detection of rare K-ras codon 12 mutations using allele-specific competitive blocker PCR. Mutation Research/genetic Toxicology & Environmental Mutagenesis, 2002,517(1-2):209-220.
[15]   Wang Y, Arlt V M, Roufosse C A , et al. ACB-PCR measurement of H-ras codon 61 CAA→CTA mutation provides an early indication of aristolochic acid I carcinogenic effect in tumor target tissues. Environ Mol Mutagen, 2012,53(7):495-504.
doi: 10.1002/em.21710
[16]   Qu S, Liu L, Gan S , et al. Detection of low-level DNA mutation by ARMS-blocker-Tm PCR. Clin Biochem, 2016,49(3):287-291.
doi: 10.1016/j.clinbiochem.2015.07.012
[17]   李剑 . 华氏巨球蛋白血症的诊治进展——“淋巴浆细胞淋巴瘤/华氏巨球蛋白血症诊断与治疗中国专家共识(2016年版)”解读. 临床血液学杂志, 2017,30(9):677-679.
[17]   Li J . New advances in the diagnosis and treatment of Waldenström macroglobulinemia. Journal of Clinical Hematology, 2017,30(9):677-679.
[18]   Staiger A M, Ott M M, Parmentier S , et al. Allele-specific PCR is a powerful tool for the detection of the MYD88 L265P mutation in diffuse large B cell lymphoma and decalcified bone marrow samples. Br J Haematol, 2015,171(1):145-148.
doi: 10.1111/bjh.2015.171.issue-1
[19]   Capaldi I B, May A M, Schmitt-Graeff A , et al. Detection of MYD88 L265P mutations in formalin-fixed and decalcified BM biopsies from patients with lymphoplasmacytic lymphoma. Exp Mol Pathol, 2014,97(1):57-65.
doi: 10.1016/j.yexmp.2014.05.005
[20]   Shin S Y, Lee S T, Kim H Y , et al. Detection of MYD88 L265P in patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia and other B-cell non-Hodgkin lymphomas. Blood Res, 2016,51(3):181-186.
doi: 10.5045/br.2016.51.3.181
[21]   Wang C Z, Lin J, Qian J , et al. Development of high-resolution melting analysis for the detection of the MYD88 L265P mutation. Clin Biochem, 2013,46(4-5):385-387.
doi: 10.1016/j.clinbiochem.2012.11.007
No related articles found!