Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 76-83    DOI: 10.13523/j.cb.20180810
    
Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation
Wen-wen SHI1,2,Lei ZHANG2,**()
1. Kunming Medical University, Kunming 650011, China
2. Biomedical Research Center, Affiliated Calmette Hospital of Kunming Medical University (First Hospital of Kunming), Kunming 650011, China
Download: HTML   PDF(648KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mesenchymal stem cells (MSCs) have capacity of self-amplification and multi-direction differentiation, which is a hot research topic as popular seeding cell in recent years. It is well known that micro-environment modulates MSCs’ development and differentiation. Mechanical stimulation is one of the factors effecting on MSCs’ differentiation. The effect of extracellular matrix stiffness and mechanical stress, like shearing stress, hydrostatic pressure, stretch stress, and microgravity on MSCs remains a hot point. In the present article, the effects of external matrix stiffness, mechanical stress and the mechanical force on three-dimensional scaffolds on the MSCs’ differentiation were mainly reviewed.



Key wordsMechanical stimulation      Mesenchymal stem cells      Cell differentiation     
Received: 04 April 2018      Published: 11 September 2018
ZTFLH:  Q233  
Corresponding Authors: Lei ZHANG     E-mail: zlei01@hotmail.com
Cite this article:

Wen-wen SHI,Lei ZHANG. Current Research of Micro Mechanical Environmental Effects on Mesenchymal Stem Cells’ Differentiation. China Biotechnology, 2018, 38(8): 76-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180810     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/76

Fig.1 Schema graph of mechanical stimulation effects on MSC differentiation in 3D scaffolds ECM: extracellular matrix(细胞外基质); FAK: Focal Adhesion Kinase (黏着斑激酶); ERK1/2: extracellular signal-regulated kinase1/2(细胞外信号调节激酶1/2); Src: 原癌基因,其表达产物为酪氨酸蛋白激酶类; Ras: Ras蛋白; Raf: Raf蛋白激酶; Talin: 踝蛋白; Actin:肌动蛋白
[1]   Anzalone R, Lo I M, Corrao S , et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev, 2010,19(4):423-438.
doi: 10.1089/scd.2009.0299
[2]   Kalaszczynska I, Ferdyn K . Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int, 2015: 430847.
[3]   Toma C, Pittenger M F, Cahill K S , et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002,105(1):93-98.
doi: 10.1161/hc0102.101442
[4]   Lee K D, Kuo T K, Whang-Peng J , et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004,40(6):1275-1284.
doi: 10.1002/hep.20469 pmid: 15562440
[5]   Yun D H, Song H Y, Lee M J , et al. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med, 2009,41(1):17-24.
doi: 10.3858/emm.2009.41.1.003
[6]   Olvera D, Sathy B N, Carroll S F , et al. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Acta Biomater, 2017,64:148-160.
doi: 10.1016/j.actbio.2017.10.010
[7]   Rashedi I, Talele N, Wang X H , et al. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One, 2017,12(10):e0187348.
doi: 10.1371/journal.pone.0187348 pmid: 5663483
[8]   刘洋, 韩东, 华闻达 , 等. 基底硬度与形貌协同对大鼠骨髓间充质干细胞成骨分化的影响. 医用生物力学, 2016,31(3):218-226.
[8]   Liu Y, Han D, Hua W D , et al. Synergic effects of substrate stiffness and topography on osteogenic differentiation of rat bone mesenchymal stem cells. Journal of Medical Biomechanics, 2016,31(3):218-226.
[9]   Xu J, Sun M, Tan Y , et al. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Differentiation, 2017,96:30-39.
doi: 10.1016/j.diff.2017.07.001
[10]   Chen G, Dong C, Yang L , et al. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces, 2015,7(29):15790-15802.
doi: 10.1021/acsami.5b02662
[11]   Hwang J H, Byun M R, Kim A R , et al. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One, 2015,10(8):e0135519.
doi: 10.1371/journal.pone.0135519 pmid: 4532446
[12]   Shih Y R, Tseng K F, Lai H Y , et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res, 2011,26(4):730-738.
doi: 10.1002/jbmr.278
[13]   Sun M, Chi G, Xu J , et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin alpha5. Stem Cell Res Ther, 2018,9(1):52-64.
doi: 10.1186/s13287-018-0798-0
[14]   Maul T M, Chew D W, Nieponice A , et al. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol, 2011,10(6):939-953.
doi: 10.1007/s10237-010-0285-8
[15]   Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar M A . Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun, 2009,388(3):601-605.
doi: 10.1016/j.bbrc.2009.08.072
[16]   Yourek G, McCormick S M, Mao J J , et al. Shear stress induces osteogenic differentiation of human mesenchymal stem cells. Regen Med, 2010,5(5):713-724.
doi: 10.2217/rme.10.60
[17]   Zhao F, Chella R, Ma T . Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng, 2007,96(3):584-595.
doi: 10.1002/(ISSN)1097-0290
[18]   Griffith L G, Swartz M A . Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol, 2006,7(3):211-224.
doi: 10.1038/nrm1858
[19]   Lee H J, Diaz M F, Ewere A , et al. Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cell Signal, 2017,38:1-9.
doi: 10.1016/j.cellsig.2017.06.012
[20]   Liu L, Yu B, Chen J , et al. Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech Model Mechanobiol, 2012,11(3-4):391-401.
doi: 10.1007/s10237-011-0319-x
[21]   Kim K M, Choi Y J, Hwang J H , et al. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One, 2014,9(3):e92427.
doi: 10.1371/journal.pone.0092427
[22]   Hu K, Sun H, Gui B , et al. TRPV4 functions in flow shear stress induced early osteogenic differentiation of human bone marrow mesenchymal stem cells. Biomed Pharmacother, 2017,91:841-848.
doi: 10.1016/j.biopha.2017.04.094
[23]   易飞舟, 赵萤, 张旻 . 流体压力对骨髓间充质干细胞软骨向分化影响的体外实验研究. 口腔医学, 2016,36(6):481-484.
[23]   Yi F Z, Zhao Y, Zhang M . In vitro study of the effects of hydrodynamic pressure on chondrogenic differentiation of bone marrow mesenchymal stem cells. Stomatology, 2016,36(6):481-484.
[24]   陈江, 贾育松, 柳根哲 , 等. 体外静水压环境下细胞因子诱导骨髓间充质干细胞向髓核样细胞分化. 中国组织工程研究, 2016,20(2):191-196.
doi: 10.3969/j.issn.2095-4344.2016.02.007
[24]   Chen J, Jia Y S, Liu G Z , et al. Cytokine-induced differentiation of bone marrow mesenchymal stem cells into nucleus pulposus-like cells under hydrostatic pressure in vitro. Chinese Journal of Tissue Engineering Research, 2016,20(2):191-196.
doi: 10.3969/j.issn.2095-4344.2016.02.007
[25]   Javanmard F, Azadbakht M, Pourmoradi M . The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrowderived mesenchymal stem cells. Bratisl Lek Listy, 2016,117(5):283-289.
[26]   Ye R, Hao J, Song J , et al. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells. J Cell Biochem, 2014,115(6):1089-1096.
doi: 10.1002/jcb.24743
[27]   Li Z, Yao S J, Alini M , et al. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng Part A, 2010,16(2):575-584.
doi: 10.1089/ten.tea.2009.0262
[28]   Liu J, Zhao Z, Li J , et al. Hydrostatic pressures promote initial osteodifferentiation with ERK1/2 not p38 MAPK signaling involved. J Cell Biochem, 2009,107(2):224-232.
doi: 10.1002/jcb.22118
[29]   Liu J, Zou L, Wang J , et al. Hydrostatic pressure promotes Wnt10b and Wnt4 expression dependent and independent on ERK signaling in early-osteoinduced MSCs. Biochem Biophys Res Commun, 2009,379(2):505-509.
doi: 10.1016/j.bbrc.2008.12.087
[30]   Haasper C, Jagodzinski M, Drescher M , et al. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol, 2008,59(6):355-363.
doi: 10.1016/j.etp.2007.11.013 pmid: 18222075
[31]   Nam H Y, Pingguan-Murphy B, Amir A A , et al. The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions. Biomech Model Mechanobiol, 2015,14(3):649-663.
doi: 10.1007/s10237-014-0628-y
[32]   Leong W S, Wu S C, Pal M , et al. Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. J Tissue Eng Regen Med, 2012,6(S3):s68-79.
doi: 10.1002/term.v6.S3
[33]   Wu Y, Zhang X, Zhang P , et al. Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect Tissue Res, 2012,53(6):451-459.
doi: 10.3109/03008207.2012.702815
[34]   Xiao W L, Zhang D Z, Fan C H , et al. Intermittent stretching and osteogenic differentiation of bone marrow derived mesenchymal stem cells via the p38MAPK-osterix signaling pathway. Cell Physiol Biochem, 2015,36(3):1015-1025.
doi: 10.1159/000430275
[35]   Chen Z, Luo Q, Lin C , et al. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells through down regulating the transcriptional co-activator TAZ. Bioengineering (Basel), 2015,468(1-2):21-26.
[36]   Zhang C, Li L, Jiang Y , et al. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. Faseb J, 2018, fj201700208RR.
[37]   Xue L, Li Y, Chen J . Duration of simulated microgravity affects the differentiation of mesenchymal stem cells. Mol Med Rep, 2017,15(5):3011-3018.
doi: 10.3892/mmr.2017.6357 pmid: 5428749
[38]   Chen G, Xu R, Zhang C , et al. Responses of MSCs to 3D scaffold matrix mechanical properties under oscillatory perfusion culture. ACS Appl Mater Interfaces, 2017,9(2):1207-1218.
doi: 10.1021/acsami.6b10745
[39]   Tang X, Teng S, Liu C , et al. Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. J Biomed Mater Res A, 2017,105(12):3445-3455.
doi: 10.1002/jbm.a.v105.12
[40]   Becquart P, Cruel M, Hoc T , et al. Human mesenchymal stem cell responses to hydrostatic pressure and shear stress. Eur Cell Mater, 2016,31:160-173.
doi: 10.22203/eCM.v031a11 pmid: 26895242
[41]   Qiu Y, Lei J, Koob T J , et al. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med, 2016,10(12):989-999.
doi: 10.1002/term.v10.12
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[3] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[4] CHEN Fei,WANG Xiao-bing,XU Zeng-hui,QIAN Qi-jun. Molecular Mechanism and Clinical Research Progress of Mesenchymal Stem Cells in the Treatment of Diabetes Mellitus[J]. China Biotechnology, 2020, 40(7): 59-69.
[5] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[6] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[7] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[8] Yan ZHENG,Huan YAO,Ke YANG. SFRP5 Inhibites Osteogenic Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Induced by BMP9[J]. China Biotechnology, 2018, 38(7): 7-13.
[9] YUAN Ya-hong, ZHAO Shan-shan, WANG Xiao-li, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. HIV-1 Tat Protein Inhibits the Hematopoiesis Support Function of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(6): 1-8.
[10] CAO Jun-jie, LI Ai-fang, WEI Ya-lin, LIAN Jing, TANG Min. Role of Notch Signaling Pathway in Bone Morphogenetic Protein 4-induced Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells and Its Mechanism[J]. China Biotechnology, 2017, 37(4): 48-55.
[11] ZHAO Zheng-de, CHEN Zhen-yin, ZHANG Hui-nan, GONG Jian-ping, XU Shao-dan, LUO Zhong-li. Effects of Self-assembling Peptide Hydrogel Scaffolds for Three-dimensional Culture on Biological Behavior and Capability of Myocardium Differentiation in Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(11): 45-51.
[12] MAO Kai-yun, FAN Yue-lei, WANG Yue, LU Jiao, CHEN Da-ming. Development Status and Trend Analysis of Mesenchymal Stem Cells Therapeutic Products[J]. China Biotechnology, 2017, 37(10): 126-135.
[13] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.
[14] WAN Chun-hong, ZHANG Zhi, LI Sheng-na, PENG Yi-yuan, XU Liang-guo. Research Progresses on TRAF7[J]. China Biotechnology, 2016, 36(3): 93-101.
[15] SHEN Peng-fei, WANG Bin, XIE Zi-kang, ZHENG Chong, QU Yu-xing. Effects of Cartilage Oligomeric Matrix Protein Overexpression on BMP-2 Induced Cell Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(10): 1-7.