Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 69-75    DOI: 10.13523/j.cb.20180809
    
High-Throughput Micro Bioreactor Development for Biopharmaceuticals
Yu-lei GUO1,Liang TANG2,Rui-qiang SUN2,You LI2,Yi-jun CHEN1,*()
1. College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
2. Wuxi Biologics, Shanghai 200131, China
Download: HTML   PDF(798KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The development of biologics based on mammalian cell culture technologies has increasingly rapid advances for the pharmaceutical markets in the recent years. Economic concerns and time constraint as the critical factors and the driving force have accelerated bioprocess development of delivery of new biopharmaceutical drugs to market. Dramatically, advancement of semi-high-throughput micro-bioreactors in bioprocess development has shown a significant alternative for the conventional approaches due to automation, increased capability of throughput, and excellent parallel level compared to costly and laborious bench-top bioreactors. There are several commercially available micro scale bioreactors, such as Simcell TM, Ambr 15 TM and Ambr 250 TM, being applied in different stages of cell culture development to enhance throughput. This research reviewed and summarized the strengths and challenges of high-throughput bioreactors for the mammalian cells culture, showing the potential as scale-down models for process development and further improvement in the future.



Key wordsMammalian cell      Cell culture process development      Bench-top bioreactor      Micro-bioreactor     
Received: 13 March 2018      Published: 11 September 2018
ZTFLH:  Q81  
Corresponding Authors: Yi-jun CHEN     E-mail: yjchen@cpu.edu.cn
Cite this article:

Yu-lei GUO,Liang TANG,Rui-qiang SUN,You LI,Yi-jun CHEN. High-Throughput Micro Bioreactor Development for Biopharmaceuticals. China Biotechnology, 2018, 38(8): 69-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180809     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/69

Fig.1 Simplified flow diagram showing biologics development and cell culture process development
Items Bench-top B
ioreactors (1~3L)
Shake flasks SimcellTM Ambr 15TM Ambr 250TM
Mode Manual Manual Automated Automated Automated
Quantities* 8 24 1260 48 24
Volume 1~3L 50~1000ml 7000ml 10~15ml 200~250ml
Capital cost Large footprint
Very high capital
Moderate footprint
Low capital
Large footprint Very
high capital
Low footprint
Moderate capital
Low footprint
Moderate capital
Temperature control Individual Incubator control Controlled in units
of 252
Controlled in units
of 12
Individual
pH control Real-time NA Periodic Real-time Real-time
DO control Real-time NA Periodic Real-time Real-time
Gassing Overlay + Sparger Surface Surface Sparger Overlay + Sparger
Oxygen KLa 2~10h-1 NA 7h-1 2.6~6.0h-1 2.5~8.5h-1
Agitation 200~300r/min 100~125r/min 20r/min 300~1500r/min 200~800r/min
P/V values 30~70W/m3 40W/m3 NA 3.9~419W/m3 10~445W/m3
Agitator blade Three-blade
propeller
NA NA Two-blade
propeller
Three-blade
propeller
Mixing time 10~100s 2~5s 20s 5~25s 5~40s
Table 1 Parameters comparison between high-throughput mini-bioreactors and bench-top bioreactors [5,17,22]
Fig.2 SimcellTM micro-bioreactor array and agitation scheme [10]
Fig.3 Ambr 15TM system contains mini-bioreactors (a) and work station (b)
Fig.4 Ambr 250TM system contains mini-bioreactors (a) and work station (b)
[1]   Reichert J . Antibodies to watch in 2015. MAbs, 2015,7(1):1-8.
[2]   EvaluatePharma. World preview 2017, Outlook to 2022. 10 th ed , 2017: 1-41.
[3]   Ecker D M, Jones S D, Levine H L . The therapeutic monoclonal antibody market. Mabs, 2015,7(1):9-14.
doi: 10.4161/19420862.2015.989042 pmid: 4622599
[4]   Hay M, Thomas D W, Craighead J L , et al. Clinical development success rates for investigational drugs. Nature Biotechnology, 2014,32(1):40-51.
doi: 10.1038/nbt.2786
[5]   Huang Y M, Kwiatkowski C . The role of high-throughput minibioreactors in process development and process optimization for mammalian cell culture. Pharmaceutical Bioprocess, 2015,3(6):397-410.
doi: 10.4155/pbp.15.22
[6]   Legmann R, Schreyer H, Combs R , et al. A predictive high throughput scale-down model of mAb production in CHO cells. Biotechnology Bioengineering, 2009,104(6):1107-1120.
doi: 10.1002/bit.v104:6
[7]   Lamping S, Zhang H, Allen B , et al. Design of a prototype miniature bioreactor for high throughput automated processing. Chemical Engineering Science, 2003,58(3):747-758.
doi: 10.1016/S0009-2509(02)00604-8
[8]   Isett K, George H, Herber W , et al. Twenty-four well plate miniature bioreactor high throughput system: assessment for microbial cultivation. Biotechnology Bioengineering, 2010,98(5):1017-1028.
[9]   Chen A, Chitta R, Chang D , et al. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnology Bioengineering, 2010,102(1):148-160.
[10]   Legmann R, Schreyer H B, Russo A P , et al. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Biotechnology and Bioengineering, 2009,104(6):1107-1120.
doi: 10.1002/bit.v104:6
[11]   Amanullah A, Otero J M, Mikola M , et al. Novel micro-bioreactor high throughput technology for cell culture process development: reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnology Bioengineering, 2010,106(1):57-67.
[12]   Lewis G, Lugg R, Lee K , et al. Novel automated microscale bioreactor technology: a qualitative and quantitative mimic for early process development. Bioprocess Journal, 2010,9(1):22-25.
doi: 10.12665/issn.1538-8786
[13]   Hsu W T, Aulakh R P S, Traul D L , et al. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology, 2012,64(6):667-678.
doi: 10.1007/s10616-012-9446-1
[14]   Rameez S, Mostafa S S, Miller C , et al. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnology Progress, 2014,30(3):718-727.
doi: 10.1002/btpr.1874
[15]   Bareither R, Bargh N, Oakeshott R , et al. Automated disposable small-scale bioreactor for high-throughput process development: implementation of the 24 bioreactor array. Pharmaceutical Bioprocessing, 2015,3(3):185-197.
doi: 10.4155/pbp.14.64
[16]   Bareither R, Bargh N, Oakeshott R , et al. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Biotechnology and Bioengineering, 2013,110(12):3126-3138.
doi: 10.1002/bit.v110.12
[17]   Xu P, Clark C, Scott C . Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale down model for biologics process development. Biotechnology Progress, 2017,33(2):478-489.
doi: 10.1002/btpr.v33.2
[18]   Tai M, Ly A, Leung I , et al. Efficient high-throughput biological process characterization: definitive screening design with the Ambr250 bioreactor system. Biotechnology Progress, 2013,31(5):1388-1395.
[19]   Janakiraman V, Kwiatkowski C . Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnology Progress, 2015,31(6):1623-1632.
doi: 10.1002/btpr.2162
[20]   Moses S, Manahan M, Ambrogelly A , et al. Assessment of AMBR TM as a model for high-throughput cell culture process development strategy . Advance Bioscience Biotechnology, 2012,3(7):918-927.
doi: 10.4236/abb.2012.37113
[21]   Nienow A W, Rielly C D, Brosnan K , et al. The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochemical Engineering Journal, 2013,76(2):25-36.
doi: 10.1016/j.bej.2013.04.011
[22]   Clarkson M P . The Ambr ® 15 cell culture user manual. TAP-9670-06-005 Issue 7. 30, 2016: 13-21.
[23]   Rathore A . Implementation of quality by design (QbD) for biopharmaceutical products. Pharmaceutical Science Technology, 2010,64(6):495-496.
pmid: 21502059
[24]   Cogdill R P, Drennen J K . Risk-based quality by design (QbD): A Taguchi perspective on the assessment of product quality, and the quantitative linkage of drug product parameters and clinical performance. Journal of Pharmaceutical Innovation, 2008,3(1):23-29.
doi: 10.1007/s12247-008-9025-3
[25]   Goldrick S, Holmes W, Bond N J , et al. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody-peptide fusion. Biotechnology Bioengineering, 2017,114(10):2222-2234.
doi: 10.1002/bit.26339
[26]   Karst D J, Scibona E, Villiger T K . Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnology Bioengineering, 2017,114(9):1978-1990.
doi: 10.1002/bit.v114.9
[27]   Tescione L, Lambropoulos J, Paranandi M R , et al. Application of bioreactor design principles and multivariate analysis for development of cell culture scale down model. Biotechnology and Bioengineering, 2015,112(1):84-97.
doi: 10.1002/bit.25330
[28]   Kwiatkowski C, Huang Y M, Kshirsagar R , et al. Traversing six logs in scale-down modeling: two case studies in developing a scale-down model for the advanced microscale bioreactor system from a 15,000L production bioreactor. 13 Aiche Meeting. San Francisco: 2013 AICHE Annual Meeting. 2013: 3-8.
[29]   Kelly W, Veigne S, Li X , et al. Optimizing performance of semi-continuous cell culture in an ambr15 TM microbioreactor using dynamic flux balance modeling . Biotechnology Progress, 2017,34(2):420-431.
[30]   Shukla A A, Rameez S, Wolfe L S , et al. High-throughput process development for biopharmaceuticals//Advances in Biochemical Engineering/Biotechnology. Berlin:Springer, 2017.
doi: 10.1007/10_2017_20 pmid: 29134461
[1] WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems[J]. China Biotechnology, 2021, 41(2/3): 129-137.
[2] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.
[3] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[4] XU Hong-ji, ZHANG Bing-bing. Gene Strategies of Enhancing the Anti-apoptosis Ability of Mammalian Cell in Engineering[J]. China Biotechnology, 2012, 32(6): 104-108.
[5] HUI Kai-yuan, GAO Xiang-dong, XU Chen. Recent Advances in Cell Engineering for Monoclonal Antibody Production[J]. China Biotechnology, 2012, 32(02): 90-95.
[6] DIAO Yong. Inducible Gene Expression of Mammalian via RNA-only Strategies[J]. China Biotechnology, 2011, 31(12): 120-125.
[7] . Advance in Fed-Batch Mammalian Cell Culture[J]. China Biotechnology, 2008, 28(11): 104-109.
[8] . Recombinant baculoviruses as mammalian cell gene-delivery vectors: a review[J]. China Biotechnology, 2007, 27(1): 126-130.
[9] . High-throughput Sorting Methods for the Selection of Highly Productive Cell Lines Expressing Exogenous Gene[J]. China Biotechnology, 2006, 26(0): 186-190.