Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 19-25    DOI: 10.13523/j.cb.20180803
    
Crystal Structural Analysis of DehDIV-R by X-ray Crystallography
Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU()
Zhejiang University,Department of Chemical and Biological Engineering,Hangzhou 310027,China
Download: HTML   PDF(1166KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

R-2-haloacid dehalogenase can selectively hydrolyze R-2-haloacid and have important applications in the synthesis of chiral compounds.The analysis of the crystal structure provides a direct structural guide to improve the selectivity and activity of the enzyme,which is the frontier in the field of enzymatic structure research.The crystal structure of R-2-chlorpropionic acid dehalogenase (DehDIV-R) from Pseudomonas ZJU26 was studied.DehDIV-R was expressed in Escherichia coli BL21(DE3) using ppSUMO as vectors,and purified by Ni-NTA affinity chromatography,ULPI digestion,second Ni-NTA affinity chromatography and gel filtration chromatography.High-quality crystals were obtained in optimal conditions (0.1 mol/L HEPES pH 7,12% PEG 6000,0.2 mol/L MgCl2,8 mmol/L CHAPS).The diffraction data of crystals were collected at BL18U1 beamline of Shanghai Synchrotron Radiation Facility(SSRF).The crystal structure of DehDIV-R with a resolution of 2.35? was successfully resolved by Molecular Replacement(MR).The Ramachandran plot shows that 98.02% of the amino acids are in the optimum region,indicating the rationality of the structure.The purification,crystallization and structural analysis of the DehDIV-R have laid a foundation for further understanding the relationship between structure and function.



Key wordsR-2-haloacid dehalogenase      Purification      Crystallization      X-ray diffraction     
Received: 09 March 2018      Published: 11 September 2018
ZTFLH:  Q814  
Corresponding Authors: Gang XU     E-mail: xugang_1030@zju.edu.cn
Cite this article:

Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography. China Biotechnology, 2018, 38(8): 19-25.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180803     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/19

Fig.1 SDS-PAGE analysis of first Ni-NTA affinity chromatography purification for DehDIV-R M:Marker;1:Supernatant;2:Flowthrough;3:Buffer A eluate;4:10% Buffer B eluate;5,6:30% Buffer B eluate;7-9:Buffer B eluate
Fig.2 SDS PAGE analysis of second Ni-NTA affinity chromatography purification for DehDIV-R after digested by ULP1 M:Marker;1:Before digested by ULP1;2:After digested by ULP1;3,4: Flowthrough;5,6:10% Buffer B eluate;7:Buffer B eluate
Fig.3 The gel filtration spectrum of DehDIV-R
Fig.4 SDS-PAGE analysis of gel filtration chromatography purification for DehDIV-R M:Marker;1-9:Fractions A71~A87
Fig.5 The crystal screening of DehDIV-R (a) HR2-144 H8 (b) PEGIIs H10 (c) PACT C10
Fig.6 The crystal of DehDIV-R after optimization
Factor Data
Space group P31
Cell dimensions
a,b,c(?) 126.279,126.279,93.483
α,β,γ (°) 90,90,120
Resolution range(?)1) 50-2.35(2.39-2.35)
No. of observed reflections 340674
No. of unique reflections 69225
Completeness (%)1) 100(100)
Rmerge1)2) 0.095(0.790)
Average I/σ(I)1) 16.6(2.5)
Redundancy1) 4.9(4.8)
Table 1 The diffraction statistics of DehDIV-R crystal
Fig.7 X-ray diffraction pattern of the DehDIV-R crystal
Factor Data
Rwork(%) 19.77
Rfree(%) 24.35
RMSDs
Bond length(?) 0.0065
Bond angles (°) 1.011
Ramachandran plot
Most-favored regions (%) 98.62
additional allowed regions (%) 1.01
disallowed regions (%) 0.37
Table 2 The refinement statistics of DehDIV-R crystal structure
Fig.8 The Ramachandran plot of DehDIV-R
Fig.9 The overall structure(a) and active pocket(b) of DehDIV-R
[1]   Kensuke F . Oxygenases and dehalogenases: Molecular approaches to efficient degradation of chlorinated environmental pollutants. Journal of the Agricultural Chemical Society of Japan, 2006,70(10):2335-2348.
[2]   Kurihara T, Esaki N . Bacterial hydrolytic dehalogenases and related enzymes:Occurrences,reaction mechanisms and applications. Chemical Record, 2010,8(2):67-74.
[3]   Hill K E, Marchesi J R, Weightman A J . Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology, 1999,181(8):2535-2547.
pmid: 10198020
[4]   Wightman A J, Tooping A W, Hill K E , et al. Transposition of DEH,a broad-host-range transposon flanked by ISPpu12,in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. Journal of Bacteriology, 2002,184(23):6581-6591.
doi: 10.1128/JB.184.23.6581-6591.2002
[5]   Li Y F, Kurihara T, Ichiyama S , et al. Mass spectrometric analysis of the reactions catalyzed by L-2-haloacid dehalogenase mutants and implications for the roles of the catalytic amino acid residues. Journal of Molecular Catalysis B Enzymatic, 2003,23(2):337-345.
doi: 10.1016/S1381-1177(03)00097-3
[6]   Hisano T, Hata Y, Fujii T , et al. Crystallization and preliminary X-ray crystallographic studies of L-2-haloacid dehalogenase from Pseudomonas sp.YL.Proteins-structure Function & Bioinformatics, 2015,24(4):520-522.
[7]   Ridder I S, Rozeboom H J, Kalk K H , et al. Three-dimensional structure of L-2-haloacid dehalogenase from xanthobacter autotrophicus GJ10 complexed with the substrate-analogue formate. Journal of Biological Chemistry, 1997,272(52):33015-33022.
doi: 10.1074/jbc.272.52.33015
[8]   Schmidberger J W, Wilce J A, Andrew J W , et al. Purification,crystallization and preliminary crystallographic analysis of DehI,a group I α-haloacid dehalogenase from Pseudomonas putida strain PP3. Acta Crystallographica Section F, 2010,64(7):596-598.
[9]   Schmidberger J W, Wilce J A, Andrew J W , et al. The crystal structure of DehI reveals a new alpha-haloacid dehalogenase fold and active-site mechanism. Journal of Molecular Biology, 2008,378(1):284-294.
doi: 10.1016/j.jmb.2008.02.035
[10]   Effendi A J, Greenaway S D, Dancer B N . Isolation and characterization of 2,3-dichloro-1-propanol-degrading rhizobia. Applied and Environmental Microbiology, 2000,66(7):2882-2887.
doi: 10.1016/j.ijmm.2006.02.008 pmid: 92087
[11]   Higgins T P, Hope S J, Effendi A J , et al. Biochemical and molecular characterisation of the 2,3-dichloro-1-propanol dehalogenase and stereospecific haloalkanoic dehalogenases from a versatile Agrobacterium sp. Biodegradation, 2005,16(5):485-492.
doi: 10.1007/s10532-004-5670-5
[12]   Cairns S S, Cornish A, Cooper R A . Cloning ,sequencing and expression in Escherichia coli of two Rhizobium sp.genes encoding haloalkanoate dehalogenases of opposite stereospecificity. European Journal of Biochemistry, 1996,235(3):744-749.
doi: 10.1111/ejb.1996.235.issue-3
[13]   项炯华, 吴坚平, 王能强 , 等. 2-氯丙酸脱卤酶产酶菌种的筛选及酶学性质研究. 化学反应工程与工艺, 2005,21(6):537-541.
[13]   Xiang J H, Wu J P, Wang N Q , et al. Screening of 2-chloropropionic acid dehalogenase-production microorganisms and its enzymatic characteristics. Chemical Reaction Engineering and Technology, 2005,21(6):537-541.
[14]   林春娇 . C2 /C3卤代酸脱卤酶的筛选及克隆表达. 杭州: 浙江大学, 2011.
[14]   Lin C J . Screening,cloning and expression for C2 /C3 haloacid dehalogenases. Hangzhou:Zhejiang University, 2011.
[15]   Malakhov M P, Mattern M R, Malakhova O A , et al. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. Journal of Structural & Functional Genomics, 2004,5(1-2):75-86.
doi: 10.1023/B:JSFG.0000029237.70316.52 pmid: 15263846
[16]   Marblestone J G, Edavettal S C, Lim Y , et al. Comparison of SUMO fusion technology with traditional gene fusion systems:Enhanced expression and solubility with SUMO. Protein Science, 2006,15(1):182-189.
doi: 10.1110/ps.051812706
[1] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[2] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[3] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[4] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[5] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[6] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[7] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[8] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[9] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[10] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[11] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[12] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[13] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[14] Shi-jie LI,Yan-kun YANG,Meng LIU,Zhong-hu BAI,Jian JIN. Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag[J]. China Biotechnology, 2018, 38(3): 51-61.
[15] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.