Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 10-18    DOI: 10.13523/j.cb.20180802
    
Eukaryotic Expression of Porcine IL-17 Gene and its Bioactivity
Ding-hao DENG,Yong-le XIAO,Jian-xue TANG,Xing YANG,Rong GAO()
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education,Key Laboratory for Animal Disease Prevention and Food Safety of Sichuan Province,College of Life Sciences,Sichuan University,Chengdu 610064,China
Download: HTML   PDF(1792KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To study porcine interleukin-17(IL-17) eukaryotic expression and their biologic activity. Methods: The IL-17 gene was amplified by PCR and cloned into eukaryotic expression vector pVAX1,named PV17. PV17 was transfected into IPEC-J2 cells,HaCaT cells and L02 cells,thereafter the cells were collected on hours 24,48 and 72,the supernatants were collected on hours 48. Related genes expression levels in cells were analysed by qRT-PCR,bioactivity of antimicrobial peptides in supernatants were analyzed by bacteriostatic test in vitro. Results: The eukaryotic expression plasmid of the porcine IL-17 gene was constructed and transfected into the three eukaryotic cells,and could expressed in target cells. The expression levels of antimicrobial peptide genes (RegⅢ,S100A8 and BD2),JAK-STAT signaling pathway genes (JAK1,STAT1 and STAT3) and cytokine genes (IL-6,IL-12 and TNF-α) were significantly up-regulated. Furthermore,the supernatants have marked bacteriostatic effect on E. coli and S. aureus. Conclusion: The recombinant plasmid of the porcine IL-17 gene was constructed and expressed in target cells,and the expressed products elicited the significant increases of cytokines and antibacterial peptides,which manifested obvious antibacterial activities against E. coli and S. aureus drug-resistant bacteria,and facilitated the further development of porcine IL-17 as the antibacterial reagent.



Key wordsPorcine IL-17      Cell transfection      Immunity      Antibacterial effect     
Received: 19 March 2018      Published: 11 September 2018
ZTFLH:  Q786  
Corresponding Authors: Rong GAO     E-mail: gaorong96@163.com
Cite this article:

Ding-hao DENG,Yong-le XIAO,Jian-xue TANG,Xing YANG,Rong GAO. Eukaryotic Expression of Porcine IL-17 Gene and its Bioactivity. China Biotechnology, 2018, 38(8): 10-18.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180802     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/10

基因 引物(5'-3') 退火温
度/℃
pPPIA-F AGACAGCAGAAAACTTCCGTG 52
pPPIA-R ACTTGCCACCAGTGCCATTA
hGAPDH-F GTCAGTGGTGGACCTGACCT 61
hGAPDH-R AGGGGAGATTCAGTGTGGTG
pIL-17-F CAGACGGCCCTCAGATTACTCCA 61
pIL-17-R AGCCCACTGTCACCATCACTTTCT
hIL-17-F ACCAATCCCAAAAGGTCCTC 50.4
hIL-17-R CACTTTGCCTCCCAGATCAC
pRegⅢγ-F CCACCGAGGGCTTGGAA 50.5
pRegⅢγ-R GCAACGTAATTGAGCACATCAGA
hRegⅢα-F TATGGCTCCCACTGCTATGCCT 51
hRegⅢα-R TCTTCACCAGGGAGGACACGAA
pS100A8-F GCGTAGATGGCGTGGTAA 50
pS100A8-R GCCCTGCATGTGCTTTGT
hS100A8-F ATGCCGTCTACAGGGATGAC 55.5
hS100A8-R ACGCCCATCTTTATCACCAG
pBD2-F CCAGAGGTCCGACCACTA 56.8
pBD2-R GGTCCCTTCAATCCTGTT
hBD2-F CATGAGGGTCTTGTATCTCCTCT 57.6
hBD2-R CCTCCTCATGGCTTTTTGCAGC
pJAK1-F TTTGAGAAGTCCGAGGTGCTA 60
pJAK1-R CAGGATCTGCTTCTTCAGGTG
hJAK1-F TTCTACATGGGGGGATAG 56
hJAK1-R TAAGTATGGAAACCCTCTAA
pSTAT1-F TCTGGCACAGTGGCTAGAAAATC 57.4
pSTAT1-R GAAAACGGATGGTGGCAAAC
hSTAT1-F AGTCTTGGCACCTAACGTGCTG 54
hSTAT1-R AGTTCGTACCACTGAGACATCCTG
基因 引物(5'-3') 退火温
度/℃
pSTAT3-F TGCAGCAGAAAGTGAGCTAC 57.2
pSTAT3-R CCGGTCTTGATGACTAATGG
hSTAT3-F GGAGGAGTTGCAGCAAAAG 56
hSTAT3-R TGTGTTTGTGCCCAGAATGT
pIL-6-F GGCAAAAGGGAAAGAATCCAG 52.5
pIL-6-R CGTTCTGTGACTGCAGCTTATCC
hIL-6-F ACTCACCTCTTCAGAACGAATTG 54.8
hIL-6-R CCATCTTTGGAAGGTTCAGGTTG
pIL-12-F TAGCCACGAATGAGAGTTGCC 52.5
pIL-12-R AGGCACAGGGTTGTCATAAAAGA
hIL-12-F CCACTCCAGACCCAGGAATG 51
hIL-12-R GACGGCCCTCAGCAGGT
pTNF-α-F CGACTCAGTGCCGAGATCAA 54.5
pTNF-α-R CCTGCCCAGATTCAGCAAAG
hTNF-α-F CCCAGGGACCTCTCTCTAATC 52.4
hTNF-α-R ATGGGCTACAGGCTTGTCACT
Table 1 The primers for qRT-PCR
Fig.1 Amplification of IL-17 gene by PCR Lane M:100bp DNA Ladder; Lane 1:Negative Control; Lane 2:IL-17 Amplification Product
Fig.2 Restriction enzyme digestion products of PV17 Lane M:2K plus DNA Marker; Lane 1:PV17 digestion products
Fig.3 Expression change of IL-17 gene in cells (a) Expression change of IL-17 gene in IPEC-J2 cells (b) Expression change of IL-17 gene in HaCaT cells (c) Expression change of IL-17 gene in L02 cells Note:Different letters represent multiple comparisons,different letters mean significant differences,the same letters mean no significant differences. The followings are the same as here
Fig.4 Expression change of antimicrobial peptide genes in cells (a) (b) (c) Expression change of RegⅢ gene in IPEC-J2 cells,HaCaT cells and L02 cells (d) (e) (f) Expression change of S100A8 gene in IPEC-J2 cells,HaCaT cells and L02 cells (g) (h) (i) Expression change of BD2 gene in IPEC-J2 cells,HaCaT cells and L02 cells
Fig.5 Expression change of JAK-STAT signaling pathway genes in cells (a) (b) (c) Expression change of JAK1 gene in IPEC-J2 cells,HaCaT cells and L02 cells (d) (e) (f) Expression change of STAT1 gene in IPEC-J2 cells,HaCaT cells and L02 cells (g) (h) (i) Expression change of STAT3 gene in IPEC-J2 cells,HaCaT cells and L02 cells
Fig.6 Expression change of cytokine genes in cells (a) (b) (c) Expression change of IL-6 gene in IPEC-J2 cells,HaCaT cells and L02 cells (d) (e) (f) Expression change of IL-12 gene in IPEC-J2 cells,HaCaT cells and L02 cells (g) (h) (i) Expression change of TNF-α gene in IPEC-J2 cells,HaCaT cells and L02 cells
Fig.7 Inhibition effect of the supernatants on the proliferation of E. coil (a) (b) (c) Inhibition effect of the three supernatants on the proliferation of standard E. coil (d) (e) (f) Inhibition effect of the three supernatants on the proliferation of drug-resistant E. coil Note:PC means positive control,NC means negative control,BC means blank control. The followings are the same as here
Fig.8 Inhibition effect of the supernatants on the proliferation of S. aureus (a) (b) (c) Inhibition effect of the three supernatants on the proliferation of standard S. aureus (d) (e) (f) Inhibition effect of the three supernatants on the proliferation of drug-resistant S. aureus
[1]   Aggarwal S, Ghilardi N, Xie M H , et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. Journal of Biological Chemistry, 2003,278(3):1910-1914.
doi: 10.1074/jbc.M207577200
[2]   Rouvier E, Luciani M F, Mattei M G , et al. CTLA-8,cloned from an activated T cell,bearing AU-rich messenger RNA instability sequences,and homologous to a herpesvirus saimiri gene. The Journal of Immunology, 1993,150(12):5445-5456.
[3]   Hartupee J, Liu C, Novotny M , et al. IL-17 enhances chemokine gene expression through mRNA stabilization. The Journal of Immunology, 2007,179(6):4135-4141.
doi: 10.4049/jimmunol.179.6.4135 pmid: 17785852
[4]   Shen F, Gaffen S L . Structure-function relationships in the IL-17 receptor:implications for signal transduction and therapy. Cytokine, 2008,41(2):92-104.
doi: 10.1016/j.cyto.2007.11.013
[5]   Meyer D M, Jesson M I, Li X , et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor,CP-690,550,in rat adjuvant-induced arthritis. Journal of Inflammation, 2010,7(1):41.
doi: 10.1186/1476-9255-7-41
[6]   Liang S C, Tan X Y, Luxenberg D P , et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. Journal of Experimental Medicine, 2006,203(10):2271-2279.
doi: 10.1084/jem.20061308
[7]   Kim B S, Park Y J, Chung Y . Targeting IL-17 in autoimmunity and inflammation. Archives of Pharmacal Research, 2016,39(11):1537-1547.
doi: 10.1007/s12272-016-0823-8 pmid: 27576555
[8]   Numasaki M, Watanabe M, Suzuki T , et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. The Journal of Immunology, 2005,175(9):6177-6189.
doi: 10.4049/jimmunol.175.9.6177
[9]   Kao C Y, Huang F, Chen Y , et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway. The Journal of Immunology, 2005,175(10):6676-6685.
doi: 10.4049/jimmunol.175.10.6676
[10]   Marks B R, Craft J. Barrier immunity and IL-17// Seminars in Immunology. Academic Press, 2009,21(3):164-171.
[11]   Onishi R M, Gaffen S L . Interleukin-17 and its target genes:mechanisms of interleukin-17 function in disease. Immunology, 2010,129(3):311-321.
doi: 10.1111/j.1365-2567.2009.03240.x pmid: 20409152
[12]   Song X, Zhu S, Shi P , et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nature Immunology, 2011,12(12):1151-1158.
doi: 10.1038/ni.2155
[13]   Cua D J, Tato C M . Innate IL-17-producing cells:the sentinels of the immune system. Nature Reviews Immunology, 2010,10(7):479-489.
doi: 10.1038/nri2800 pmid: 20559326
[14]   Komiyama Y, Nakae S, Matsuki T , et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. The Journal of Immunology, 2006,177(1):566-573.
doi: 10.4049/jimmunol.177.1.566 pmid: 16785554
[15]   周艳春, 方丹, 许燕璇 . 小鼠IL-17基因的克隆及其真核表达载体的构建. 海南医学, 2009,20(12):10-12.
[15]   Zhou Y C, Fang D, Xu Y X . Molecular cloning of mouse IL-17 gene and construction of its eukaryotic expression vector. Hainan Medical Journal, 2009,20(12):10-12.
[16]   Dirisala V R, Jeevan A, Ramasamy S K , et al. Molecular cloning,expression,and in silico structural analysis of guinea pig IL-17. Molecular Biotechnology, 2013,55(3):277-287.
doi: 10.1007/s12033-013-9679-z pmid: 23813049
[17]   熊艳芸, 谢琪辉, 罗廷荣 , 等. 广西巴马小型猪白细胞介素17基因的克隆及其序列分析. 西南农业学报, 2005,18(6):844-847.
[17]   Xiong Y Y, Xie Q H, Luo T R , et al. Cloning and sequence analysis of interleukin-17 gene of Guangxi Bama mini pig. Southwest China Journal of Agricultural Sciences. 2005,18(6):844-847.
[18]   何勇, 朱艳平, 岳锋 , 等. 猪白细胞介素17A基因的克隆与鉴定. 基因组学与应用生物学, 2017,( 11):4622-4626.
[18]   He Y, Zhu Y P, Yue F , et al. Cloning and identification of porcine IL-17A gene. Genomics and Applied Biology, 2017,( 11):4622-4626.
[19]   Isailovic N, Daigo K, Mantovani A , et al. Interleukin-17 and innate immunity in infections and chronic inflammation. Journal of Autoimmunity, 2015,60:1-11.
doi: 10.1016/j.jaut.2015.04.006 pmid: 25998834
[20]   Korn T, Bettelli E, Oukka M , et al. IL-17 and Th17 cells. Annual Review of Immunology, 2009,27:485-517.
doi: 10.1146/annurev.immunol.021908.132710
[21]   Xu S, Cao X . Interleukin-17 and its expanding biological functions. Cellular & Molecular Immunology, 2010,7(3):164-174.
doi: 10.1038/cmi.2010.21 pmid: 4002915
[22]   Katoh S, Kitazawa H, Shimosato T , et al. Cloning and characterization of swine interleukin-17,preferentially expressed in the intestines. Journal of Interferon & Cytokine Research, 2004,24(9):553-559.
doi: 10.1089/1079990041992721 pmid: 15450131
[23]   Radek K, Gallo R . Antimicrobial peptides:natural effectors of the innate immune system//Seminars in Immunopathology. Springer-Verlag, 2007,29(1):27-43.
[24]   Kao C Y, Chen Y, Thai P , et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. The Journal of Immunology, 2004,173(5):3482-3491.
doi: 10.4049/jimmunol.173.5.3482
[25]   Leonard W J, O'Shea J J . Jaks and STATs:biological implications. Annual Review of Immunology, 1998,16(1):293-322.
doi: 10.1146/annurev.immunol.16.1.293 pmid: 9597132
[26]   Rane S G, Reddy E P . Janus kinases:components of multiple signaling pathways. Oncogene, 2000,19(49):5662-5679.
doi: 10.1038/sj.onc.1203925 pmid: 11114747
[27]   Egwuagu C E . STAT3 in CD4+ T helper cell differentiation and inflammatory diseases . Cytokine, 2009,47(3):149-156.
doi: 10.1016/j.cyto.2009.07.003 pmid: 2733795
[28]   Lin H W, Thompson J W, Morris K C , et al. Signal transducers and activators of transcription:STATs-mediated mitochondrial neuroprotection. Antioxidants & Redox Signaling, 2011,14(10):1853-1861.
[1] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[2] SUN Si,QIU Yu-lan,YAN Ju-rong,YANG Jing,WU Guang-ying,WANG Lin,XU Wen-chun. Recombinant Plasmid pcDNA3-dnaJ Prime/DnaJ Protein Boost Immunization Induce Th1/Th17 Immune Responses and Protect Mice Against Pneumococcal Infection[J]. China Biotechnology, 2019, 39(12): 9-17.
[3] WANG Meng, SUN Wen-hui, JI Fang-ling, PU Zhong-ji, LI Yin-sheng, BAO Yong-ming. Recombinant Expression of Antigen Epitope Genes of Human Cytomegalovirus and Immunogenicity Detection of the Fusion Protein[J]. China Biotechnology, 2017, 37(7): 27-33.
[4] LIU Di, YAN Ting, HE Xiu-juan, ZHENG Wen-yun, MA Xing-yuan. Preparation and Preliminary Evaluation of Triple Oral Vaccine Against Bacterial Diarrhea[J]. China Biotechnology, 2017, 37(7): 18-26.
[5] CHEN Qing, ZHU Hong-fei, GUO Xiao-yu. Progress on DNA Innate Immune Recognition Receptors[J]. China Biotechnology, 2016, 36(5): 112-117.
[6] ZHAO Zhi-wu, WANG Jun-shi, MA Min, ZHANG Shao-hua, YAN Jiong. Effect of Down-regulated Perilipin 1 Gene Expression on Lipolysis of 3T3-L1 Adipocytes[J]. China Biotechnology, 2016, 36(3): 17-22.
[7] LIANG Ying, LIU Jin-ying, FAN Xiao-hui, SONG De-zhi, XIAO Qing, YIN Jun, FENG An-lin, YANG Li, ZHOU Dan-ni, LAI Zhen-pin. The Prokaryotic Expression and Identification of HN Gene Fragment of Newcastle Disease Virus Strain 7793[J]. China Biotechnology, 2013, 33(8): 32-37.
[8] HE Xiao-bing, JIA Huai-jie, JING Zhi-zhong. Innate Immune Recognition of the Pathogenic Fungus by Toll-Like Receptors[J]. China Biotechnology, 2012, 32(12): 86-92.
[9] MAN Chao-lai, LI Feng, TANG Gao-xia, ZHEN Xin, MI Xiao-ju. Research Progress of Akirin Gene[J]. China Biotechnology, 2012, 32(03): 106-109.
[10] WANG Tao, DU Li, MA Qiong, CUI Yu-fang. Current Progress on the Signal Transduction Pathway of Innate Immunity in Caenorhabditis Elegans[J]. China Biotechnology, 2011, 31(7): 121-125.
[11] JIA Qin-mei, WU Jin-yuan, YI Shan, ZHANG Guang-ming, GAO Yan, YANG Xing, ZHAO Xiao-nan, SUN Mao-sheng, LI Hong-jun. Preparation and Immunogenicity of a Scalable Inactivated Vaccine, Strain ZTR-5 in Mice[J]. China Biotechnology, 2011, 31(11): 6-10.
[12] SUN Ying-jun, ZHANG Yan, WU Qiong, ZHENG Hai-xue, ZHANG Zhi-dong. The Progress of Study on Innate Immunity Led to the Design and Development of More Specific and Focused Adjuvants[J]. China Biotechnology, 2011, 31(03): 87-90.
[13] ZHANG Hai-Yan, YANG Hong-Jun, WANG Chang-Fa, HE Hong-Ban, ZHONG Ji-Feng, YANG Shao-Hua, MA Wei-Meng. Evaluation of the Immunity Effectiveness on the Engineered Subunit Vaccine of Staphylococcus aureus α-Hemolysin[J]. China Biotechnology, 2009, 29(11): 17-22.
[14] SHI Chun-Lin . Multiple Roles of Antimicrobial Peptides in Host Denfence[J]. China Biotechnology, 2008, 28(4): 82-86.