Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (7): 89-93    DOI: 10.13523/j.cb.20180712
    
Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance
Zhong-yang YE1,Huai-yu QIU3,Bing-hua ZHU1,Ze LI1,Ye ZHU2,**(),Li-gui WANG1,**()
1 Institute of Disease Control and Prevention of Chinese People’s Liberation Army, Beijing 100071,China;
2 Library ofAcademy of Military Sciences, Beijing 100850, China
3 Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020,China
Download: HTML   PDF(373KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, the emergence of drug-resistant bacteria poses a serious threat to the antibiotic therapy. sRNAs are new regulatory factors of gene expression, which regulate the physiological function of cell in response to various environmental changes by pairing target mRNA or protein. Studies have shown that sRNA can play an important role in the process of bacterial resistance, such as blocking the pathways of antibiotics into cells and releasing the drugs in the cells. The sRNAs regulates the expression of genes in related with bacterial resistance, which is helpful for elucidation of resistance mechanisms and discovery of new drug targets were reviewed.



Key wordssRNA      Bacterial resistance      Resistance mechanism     
Received: 27 February 2018      Published: 13 August 2018
ZTFLH:  Q819  
Corresponding Authors: Ye ZHU,Li-gui WANG     E-mail: zhuye10079@sina.com;wangligui1983@126.com
Cite this article:

Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance. China Biotechnology, 2018, 38(7): 89-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180712     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I7/89

菌种 sRNA 靶点基因 靶点基因功能 sRNA作用机制 参考文献
大肠杆菌 SdsR tolC 编码外排泵AcrAB-TolC外膜成分蛋白 通过碱基配对直接封闭核糖体结合位点的上游 [9]
大肠杆菌 DsrA mdtE 编码多药外排泵MdtEF 激活编码多药外排泵MdtEF的基因mdtE [11]
淋病奈瑟菌 NrrF mtrF 编码外排泵MtrC-MtrD-MtrE内膜蛋白MtrF 调控mtrF转录水平 [12]
大肠杆菌 MgrR eptB 编码脂多糖修饰酶EptB 下调eptB表达 [14]
沙门氏菌 SroC MgrR 下调eptB表达 直接下调MgrR的水平 [15]
大肠杆菌 GcvB cycA 编码一种与甘氨酸、D-环丝氨酸等转运相关的透性酶 与Hfq蛋白协作下调cycA表达 [16]
大肠杆菌 MicF ompF 编码膜孔蛋白 ompF mRNA的翻译起始区形成RNA双链以下调这种外膜孔蛋白的表达 [18]
肠原杆菌 MicL lpp 编码外膜脂蛋白LPP 抑制lpp mRNA的翻译 [19]
大肠杆菌 RyhB cirA 编码的CirA同时作为含铁细胞转运体和大肠菌素Ia的受体 以碱基配对方式改变cirA mRNA结构从而对抗hfq的抑制作用,恢复其稳定期同等效率的翻译水平 [20]
金黄色葡萄球菌 SprX spoVG 编码SpoVG蛋白 直接反义配对第二操作子基因内的翻译起始序列,下调SpoVG蛋白的表达 [21]
大肠杆菌 GlmY、GlmZ glmS 编码葡萄糖-6-磷酸盐合成酶 共同调节GlmS的合成以达到葡萄糖-6-磷酸盐稳态 [22]
大肠杆菌 McaS、RprA、
OmrA/B、GcvB
csgD 编码生物膜调控子CsgD csgD mRNA的5'UTR以碱基配对方式结合发挥调控作用 [24]
Table 1 Collections of sRNAs and target genes
[1]   Ding Y T . The research progress on mechanism of bacterial resistance at home and aboad. Modern Preventive Medicine, 2013,40(6):1109-1111.
[2]   Zhao M Q, Shen H Y, Pan W , et al. The causes, mechanism and preventive measures of bacterial resistance. China Animal Husbandry & Veterinary Medicine, 2011,38(5):177-181.
[3]   Hou F, Lü Y . Bacterial resistance can’t be ignored. Chinese Journal of Antibiotics, 2017,42(3):203-206.
[4]   Nie J J, Jin X, Meng X C , et al. Classifications and funtions of small non-coding RNA in bacteria. Chinese Journal of Animal Infectious Diseases, 2013,21(3):75-79.
[5]   Song T, Sabharwal D, Gurung J M , et al. Vibrio cholerae utilizesdirect sRNA regulation in expression of a biofilm matrix protein. PLoS One, 2014,9(7):e101280.
doi: 10.1371/journal.pone.0101280 pmid: 4108314
[6]   Thomason M K, Fontaine F, De L N , et al. A small RNA thatregulates motility and biofilm formation in response to changes innutrient availability in Escherichia coli. Mol Microbiol, 2012,84(1):17-35.
doi: 10.1111/mmi.2012.84.issue-1
[7]   Udekwu K I . Transcriptional and post-transcriptional regulation of the Escherichia coli luxS Mrna; involvement of the sRNA MicA. PLoS One, 2010,5(10):e13449.
doi: 10.1371/journal.pone.0013449
[8]   Du D, Veen H W V,Luisi B F .Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends in Microbiol, 2015,23(5):311-319.
doi: 10.1016/j.tim.2015.01.010 pmid: 25728476
[9]   Parker A, Gottesman S . Small RNA regulation of TolC, the outer membrane component of bacterial multidrug transporters. Journal of Bacteriology, 2016,198(7):1101-1113.
doi: 10.1128/JB.00971-15 pmid: 26811318
[10]   Omar T Q, Vicenta M, Rafael N M , et al. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One, 2013,8(7):e68147.
doi: 10.1371/journal.pone.0068147
[11]   Nishino K, Yamasaki S, Hayashi-Nishino M , et al. Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2011,66(2):291-296.
doi: 10.1093/jac/dkq420 pmid: 21088020
[12]   Lydgia A J, Pan J C, Michael W D , et al. Control of RNA stability by NrrF, an iron-regulated small RNA in Neisseria gonorrhoeae. Journal of Bacteriology, 2013,195(22):5166-5173.
doi: 10.1128/JB.00839-13 pmid: 3811587
[13]   Anne H D . Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta, 2009,1794(5):808-816.
doi: 10.1016/j.bbapap.2008.11.005 pmid: 19100346
[14]   Kyung M, Susan G . A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol, 2009,74(6):1314-1330.
doi: 10.1111/j.1365-2958.2009.06944.x pmid: 19889087
[15]   Acuna L G, Barros M J, Martinez D , et al. A feed-forward loop between SroC and MgrR small RNAs modulates the expression of eptB and the susceptibility to polymyxin B in Salmonella typhimurium. Microbiology, 2016,162(11):1996-2004.
doi: 10.1099/mic.0.000365
[16]   Pulvermacher S C, Stauffer L T, Stauffer G V . Role of the sRNA GcvB in regulation of cycA in Escherichia coli. Microbiology, 2009,155(1):106-114
doi: 10.1099/mic.0.023598-0 pmid: 19118351
[17]   Zhu Z, Cao M Z, Zhang J L , et al. Research progress on bacterial resistance. China Animal Husbandry&Veterinary Medicine, 2015,42(12):3371-3376.
[18]   Jörg V, Kai P . Small non-coding RNAs and the bacterial outer membrane. Microbiology, 2006,9(6):605-611
doi: 10.1016/j.mib.2006.10.006 pmid: 17055775
[19]   Monica S G, Taylor B U, Emily B G , et al. MicL, a new sE-dependent sRNA, combatsenvelope stress by repressing synthesisof Lpp, the major outer membranelipoprotein. Genes Dev. 2014,28(14):1620-1634.
doi: 10.1101/gad.243485.114
[20]   Hubert S, Marie P C, Justine B L , et al. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. The EMBO Journal, 2013,32(20):2764-2778.
doi: 10.1038/emboj.2013.205
[21]   Alex E, Pierre T, Svetlana C , et al. A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus. Nucleic Acids Research, 2014,42(8):4892-4905.
doi: 10.1093/nar/gku149
[22]   Khan M A, Göpel Y, Milewski S , et al. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Front Microbiol, 2016,7(e1025):908.
[23]   Gao X F, Liu Z Z, Li W L , et al. Advance in research on regulation of sRNAs in bacterial biofilm formation. Mil Med Sci, 2017,41(6):530-533.
[24]   Jacob R C, Karin S . Small RNAs and their role in biofilm formation. Trends Microbiol, 2013,21(1):39-49.
doi: 10.1016/j.tim.2012.10.008 pmid: 3752386
[25]   Miller C L, Manuel R , Rajasekhar K S L,et al.RsmW,Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiology, 2016,16(1):155.
doi: 10.1186/s12866-016-0771-y
[26]   Li Y L, Lu Y M, Han Z M , et al. Bacterial biofilm: composition, regulation and association with plant. Microbiology China, 2017,44(6):1491-1499.
[27]   Maureen K T, Fanette F, Nicholas D L , et al. A small RNA that regulates motility and biofilm formation inresponse to changes in nutrient availability in Escherichia coli. Mol Microbiol. 2012,84(1):17-35.
doi: 10.1111/mmi.2012.84.issue-1
[28]   Liu Z Z, Gao X F, Wang H D , et al. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiology, 2016,16(1):176.
doi: 10.1186/s12866-016-0793-5 pmid: 4973556
[29]   Diego O S, Franziska M, Anja M R , et al. The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the σE-dependent sRNA RybB. Molecular Microbiology, 2016,101(1):136-151.
doi: 10.1111/mmi.13379
[30]   Yu J, Schneiders T . Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol, 2012,12(1):1-13.
doi: 10.1186/1471-2180-12-1 pmid: 3292460
[31]   Howden B P, Beaume M, Harrison P F , et al. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents Chemother, 2013,57(8):3864-3874.
doi: 10.1128/AAC.00263-13
[32]   Jeeves R E , Marriott A A N,Pullan S T,et al. Mycobacterium tuberculosis is resistant to isoniazid at a slow growth rate by single nucleotide polymorphisms in katG Codon Ser315. PLoS One, 2015,10(9):e0138253.
doi: 10.1371/journal.pone.0138253
[33]   Molina-Santiago C, Daddaoua A, Gomez-Lozano M , et al. Differential transcriptional response to antibiotics by Pseudomonas putida DOT-T1E. Environmental Microbiology, 2015,17(9):3251-3262.
doi: 10.1111/emi.2015.17.issue-9
[34]   Yao Y F, Zhao Y, Zhao G R . Artificial sRNAs silencing csrA to Optimize the production of L-tyrosine in Escherichia coli. China Biotechnology, 2013,33(8):60-65.
[35]   An Z F, Li Y M, Yang Y K , et al. Overexpression of artificial sRNA anti-micA enhancing Escherichia coli viability and pullulanase production. Journal of Biology, 2017,34(1):16-22.
[1] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[2] YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong. Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli[J]. China Biotechnology, 2013, 33(8): 61-66.
[3] ZHU Kuan-peng, ZHAO Shu-jin. Double-stranded RNA-mediated Gene Silencing and Over-expression of FmSTS in Polygonum multiflorum Thunb Hairy Roots[J]. China Biotechnology, 2012, 32(08): 41-48.
[4] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.