Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (6): 58-62    DOI: 10.13523/j.cb.20180608
    
Establishment and Identification of Endogenous CD133 + Cell Tracer Mouse Model
Ming-ming HAN,Yu-ping LUO()
School of Life Science,Nanchang University,Nanchang 330031,China
Download: HTML   PDF(1640KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To establish a mouse model that can trace the differentiation of CD133 positive neural stem cells.Methods:The CD133-Cre-ERT2 transgenic mice were mated with Rosa26-CAG-LSL-ZsGreen transgenic mice to produce CD133-CreER;CAG-ZsGreen double transgenic in C57B16 mice.Result:The immunohistochemistry and laser scanning confocal imaging analysis showed that Tamoxifen-Inducible Cre/loxP recombination, as depicted by green cells, existed in lateral ventricle SVZ, the ventricular zone of third ventricle and the fourth ventricle in adult mice, and the green fluorescence overlaps with CD133+ red fluorescence in these regions.Conclusion:CD133+ is the sign of the resting nerve stem cell in the ventricle membrane, so it can trace the cell differentiation lineages of neural stem cells by analyzing ZsGreen positive cells in CD133-CreER;CAG-ZsGreen mice. The mouse model for in vivo lineage tracing of endogenous CD133+ cell was established successfully, which will be helpful to explore the activation, proliferation, migration and differentiation of CD133+ neural stem cells in the brain.



Key wordsCD133      Neural stem cells      Transgenic mouse     
Received: 24 December 2017      Published: 06 July 2018
ZTFLH:  Q78  
Corresponding Authors: Yu-ping LUO     E-mail: luoyuping@163.com
Cite this article:

Ming-ming HAN,Yu-ping LUO. Establishment and Identification of Endogenous CD133 + Cell Tracer Mouse Model. China Biotechnology, 2018, 38(6): 58-62.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180608     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I6/58

Fig.1 PCR genotyping for transgenic mice (a)~(b) CD133-Cre-ERT2 transgenic mice (c) Rosa26-CAG-LSL-ZsGreen transgenic mice
Fig.2 Schematic diagram of transgenic mice for tracing CD133+ cell
Fig.3 The immunochemistry staining show the distribution of ZsGreen and CD133+ NSCs in the mouse brain(a) The immunochemistry staining for lateral ventricle (b) The immunochemistry staining for third ventricle (c) The immunochemistry staining for fourth ventricle (blue:DAPI,green:ZsGreen,red:CD133)
[1]   Mckay R D , McKay R . Stem cells in the central nervous system. Science, 1997,276(5309):66-71.
doi: 10.1029/97JD02210 pmid: 9082987
[2]   Yun S, Reynolds R P, Masiulis I, Eisch A J . Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med, 2016,22(11):1239-1247.
doi: 10.1038/nm.4218 pmid: 5791154
[3]   Walter C, Murphy B L, Pun R Y , et al. Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J Neurosci, 2007,27(28):7541-7552.
doi: 10.1523/JNEUROSCI.0431-07.2007 pmid: 17626215
[4]   Unger M S, Marschallinger J, Kaindl J , et al. Early changes in hippocampal neurogenesis in transgenic mouse models for alzheimer’s disease. Mol Neurobiol, 2016,53(8):5796-5806.
doi: 10.1007/s12035-016-0018-9 pmid: 5012146
[5]   Ming G L, Song H . Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 2011,70(4):687-702.
doi: 10.1016/j.neuron.2011.05.001 pmid: 3106107
[6]   Fuentealba L C, Obernier K, Alvarez-Buylla A . Adult neural stem cells bridge their niche. Cell Stem Cell, 2012,10(6):698-708.
doi: 10.1016/j.stem.2012.05.012 pmid: 3726005
[7]   Gage F H . Mammalian neural stem cells. Science, 2000,287(5457):1433-1438.
doi: 10.1126/science.287.5457.1433
[8]   Arvidsson A, Collin T, Kirik D , et al. Neu-ronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002,8(9):963-970.
doi: 10.1038/nm747 pmid: 12161747
[9]   Shmelkov S V, St C R, Lyden D , et al. AC133/CD133/Prominin-1. International Journal of Biochemistry & Cell Biology, 2005,37(37):715-719.
[10]   Coskun V, Wu H, Blanchi B , et al. From the cover: CD133 + neural stem cells in the ependyma of mammalian postnatal forebrain . Proceedings of the National Academy of Sciences of the United States of America, 2008,105(3):1026-1031.
doi: 10.1073/pnas.0710000105
[11]   Beckervordersandforth R, Tripathi P, Ninkovic J , et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 2010,7(6):744-758.
doi: 10.1016/j.stem.2010.11.017 pmid: 21112568
[12]   Codega P, Silva-Vargas V, Paul A , et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 2014,82(3):545-559.
doi: 10.1016/j.neuron.2014.02.039 pmid: 24811379
[13]   Luo Y, Coskun V, Liang A , et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 2015,161(5):1175-1186.
doi: 10.1016/j.cell.2015.04.001 pmid: 4851109
[14]   Hsieh J . Orchestrating transcriptional control of adult neurogenesis. Genes Dev, 2012,26(10):1010-1021.
doi: 10.1101/gad.187336.112 pmid: 22588716
[15]   Bonaguidi M A, Wheeler M A, Shapiro J S , et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011,145(7):1142-1155.
doi: 10.1016/j.cell.2011.05.024 pmid: 3124562
[1] LIANG Zhen-xin,LIU Fang,ZHANG wei,LIU Qing-you,LI Li. The Preparation and Validation of p185 erb B2 Human-mouse Chimeric Antibody ChAb26 Transgenic Mice Mammary Gl and Bioreactor[J]. China Biotechnology, 2019, 39(8): 40-51.
[2] Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113.
[3] CHEN Xiu-xiu,WU Cheng-lin,ZHOU Li-jun. Research Progress in Preparation and Clinical Application of Therapeutic Human Antibodies[J]. China Biotechnology, 2019, 39(10): 90-96.
[4] JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping. Development of Neurogenesis in the Adult Mammalian[J]. China Biotechnology, 2017, 37(5): 107-112.
[5] DAI Shuang, ZHAO Qing-qing, QIU Feng. Transfection Efficiency Using PEI-CP Complex for CD133+ Differently Expressed by Colon Cancer Lines[J]. China Biotechnology, 2016, 36(6): 32-38.
[6] TANG Jun-ming, ZHAO Yan-ping, LIU Qi, SHENG Qing-song, WU Li-ming, QIAO Guo-hong. Modeling of Transgenic Mice Specifically Expressed HPV16-E6 in Skin[J]. China Biotechnology, 2015, 35(10): 27-31.
[7] ZHAI Tian-tian, MA Xiao-ling, Muyassar, M LI Ling-xia, LI Jiang-wei. Preparation and Characterization of Polyclonal Antibody Against CD133 Derived from Camel[J]. China Biotechnology, 2014, 34(8): 24-28.
[8] ZHANG Jin-xia, FAN Zhi-qiang, LIU Ye, ZHANG Shou-feng, YANG Yang, WANG Ying, ZHANG Fei, HU Rong-liang. Construction of Bovine Lactoferricine Transgenic Mice[J]. China Biotechnology, 2013, 33(2): 9-13.
[9] ZHANG Jing-feng, GUO Xin-zheng, WEI Heng-xi, LI Li, ZHANG Shou-quan. Research Progress of the Principal and Application on Transgenic Mouse Models of Tetracycline Inducible Expression System[J]. China Biotechnology, 2011, 31(11): 90-94.