Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (6): 34-42    DOI: 10.13523/j.cb.20180605
    
Heterologous Expression, Purification and Enzymatic Characterization of Cholesterol Oxidase PsCO4
Qian-qian GUO,Deng-ke GAO,Xiao-tao CHENG,Fu-ping LU,Tanokura Masaru(),Hui-min QIN()
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology Ministryof Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(8321KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cholesterol oxidase, which catalyzes the reaction of cholesterol to cholest-4-en-3-one, is widely used in clinical and food processing industry. Cholesterol oxidase from Pimelobacter simplex (PsCO4) was transformed into E.coli BL21(DE3), Rosetta(DE3), and C41(DE3). The bacteria were induced at different temperatures (15℃, 25℃, 37℃), and different IPTG concentrations (0.01mmol/L, 0.1mmol/L, 0.5mmol/L). The results showed that PsCO4 was expressed greatly in supernatant of Rosetta(DE3) (0.63mg/ml), at the conditions of 0.1mmol/L IPTG and 15℃. The optimum temperature and pH of heterologous expressed PsCO4 was 30℃ and 7.5. The product of cholesterol catalyzed by PsCO4 was identified by TLC and GC-MS. The substrate specificity of PsCO4 towards cholesterol, β-sitosterol, stigmasterol and pregnenolone was determined. The Km/kcat value of cholesterol (0.08s -1·μM -1) is higher than β-sitosterol (0.04s -1·μM -1), stigmasterol (0.005s -1·μM -1) and pregnenolone (0.02s -1·μM -1).



Key wordsCholesterol oxidase      Catalytic activity      Enzymatic property      Substrate specificity     
Received: 08 January 2018      Published: 06 July 2018
ZTFLH:  Q786  
Corresponding Authors: Tanokura Masaru,Hui-min QIN     E-mail: amtanok@mail.ecc.u-tokyo.ac.jp;huiminqin@tust.edu.cn
Cite this article:

Qian-qian GUO,Deng-ke GAO,Xiao-tao CHENG,Fu-ping LU,Tanokura Masaru,Hui-min QIN. Heterologous Expression, Purification and Enzymatic Characterization of Cholesterol Oxidase PsCO4. China Biotechnology, 2018, 38(6): 34-42.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180605     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I6/34

Fig.1 Three-step catalytic reaction of cholesterol oxidase
Fig.2 Enzyme digestion and colony PCR of PsCO4-pET28a olony PCR;2:Double enzyme digestion;3:EcoR I digestion; 4:PsCO4-pET28a;5:DNA marker KB ladder
Fig.3 The concentration of soluble PsCO4 in different induction conditions Induction conditions: 1~3: 15℃ 0.05, 0.1, 0.5mmol/L IPTG; 4~6: 25 ℃ 0.05, 0.1, 0.5mmol/L IPTG; 7~9: 37℃ 0.05, 0.1, 0.5mmol/L IPTG.
Fig.4 SDS-PAGE of affinity chromatography and ion exchange chromatography a)1:Supernatant; 2:Precipitant; 3:Flowthrough; 4: Washing buffer; 5:Elution buffer (b)Ion exchange chromatography
Fig.5 Gel filtration chromatography
Fig.6 Product analysis with (a)TLC and(b)(c)GC-MS (a)1:Vector pET-28a; 2: PsCO4-pET28a; 3:Cholesterol; 4: Standard of 4-Cholesten-3-one
Fig.7 Effect of temperature (a) and pH (b) on the PsCO4
底物 比酶活(U/mg) 相对酶活(%) Km(μmol/L) kcat(s-1) kcat/Km(s-1·μM-1)
胆固醇 11.02 100 231.21 ± 11.20 18.49 ± 1.81 0.08
β-谷甾醇 7.41 67.20 362.25 ± 23.50 14.49 ± 1.09 0.04
豆甾醇 0.04 0.35 526.23±10.60 2.54±0.47 0.005
孕烯醇酮 1.00 9.10 300.98±2.51 5.99±0.68 0.02
Table 1 Cholesterol oxidase enzymatic properties
Fig.8 PsCO4 active center substrate binding key amino acid comparison
Fig.9 Cholesterol oxidase substrate binding domains from different sources (a)PsCO4 mimic substrate binding channel (b)PsChO substrate binding channel (c)Cholesterol oxidase 1coy substrate-bound channel from Brevibacterium sterolicum
Fig.10 Cholesterol oxidase catalytic mechanism (a) [16] and cholesterol oxidase sequence alignment (b) F. sp.: Frankiasp.EAN1pec, WP_020461426; S. arenicola: Sarenicola arenicola CNS-205 WP_012182946; S. sp.: Streptomyces sp., AAA26719
[1]   王镜岩, 朱圣庚, 徐长法 . 生物化学第三版. 北京: 高等教育出版社, 2002: 114.
[1]   Wang J Y, Zhu S G, Xu C F. Biochemistry, 3rded. Beijing: Higher Education Press, 2002: 114.
[2]   张士亮 . 胆固醇与人体健康. 生物学通报, 1998,33(11):22-23.
[2]   Zhang S L . Cholesterol and human health. Bulletin of Biology. 1998,33(11):22-23.
[3]   周东明 . 胆固醇缺乏对Jurkat细胞增值功能及凋亡的影响. 第三军医大学学报, 2000,22(4):363-365.
doi: 10.3321/j.issn:1000-5404.2000.04.019
[3]   Zhou D M . The effect of cholesterol deficiency on the proliferation and apoptosis of Jurkat cells. Journal of Third Military Medical University, 2000,22(4):363-365.
doi: 10.3321/j.issn:1000-5404.2000.04.019
[4]   沈同, 王镜岩 . 生物化学. 北京:高等教育出版社, 1999.
[4]   Shen T, Wang J Y. Biochemistry. Beijing: Higher Education Press, 1999.
[5]   欧阳红, 杨秀芳 . 心脑血管疾病饮食调节. 北京: 金盾出版社, 2009: 187.
[5]   Ouyang H, Yang X F. The diet regulation of cardiovascular and cerebrovascular diseases. Beijing: Jindun Publishing House, 2009: 187.
[6]   Doukyu N, Nihei S . Cholesterol oxidases with high catalytic activity from Pseudomonas aeruginosa: screening, molecular genetic analysis, expression and characterization. Journal of Bioscience and Bioengineering, 2015,120(1):24-30.
doi: 10.1016/j.jbiosc.2014.12.003 pmid: 25573142
[7]   Mathieu J M, Wang F, Segatori L , et al. Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted Chromobacterium oxidase. Biotechnology and Bioengineering, 2012,109(9):2409-2415.
doi: 10.1002/bit.24506 pmid: 22447444
[8]   王冠超 . 重组胆固醇氧化酶的表达与纯化研究. 无锡: 江南大学, 2014.
[8]   Wang G C . Expression and purification of recombinant cholesterol oxidase. Wuxi: Jiangnan University, 2014.
[9]   Turfitt G . The microbiological degradation of steroids: 2. oxidation of cholesterol by Proactinomyces spp. Biochemical Journal, 1944,38(5):492.
doi: 10.1042/bj0380492
[10]   Kojima K, Kobayashi T, Tsugawa W , et al. Mutational analysis of the oxygen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity. Journal of Molecular Catalysis B-enzymatic, 2013,88(88):41-46.
doi: 10.1016/j.molcatb.2012.11.001
[11]   Glynou K, Ioannou P C, Christopoulos T K . One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expression & Purification, 2003,27(2):384-390.
doi: 10.1016/S1046-5928(02)00614-9 pmid: 12597900
[12]   季文明, 陈毅力, 张和春 , 等. 比色法测定胆固醇氧化酶酶活. 无锡轻工大学学报, 2000,5(19):251-254.
doi: 10.3321/j.issn:1673-1689.2000.03.012
[12]   Ji W M, Chen Y L, Zhang H C , et al. Assay of cholesterol oxidase activity by colorimetry. Journal of Wuxi University of Light Industry, 2000,5(19):251-254.
doi: 10.3321/j.issn:1673-1689.2000.03.012
[13]   Qin H M, Wang J W, Guo Q Q , et al. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity. Protein Expression & Purification, 2017,139(7):1-7.
[14]   Qin H M, Zhu Z L, Ma Z , et al. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. Scientific Reports, 2017,7(1):16375.
doi: 10.1038/s41598-017-16768-6 pmid: 29180806
[15]   Yue Q K, Kass I J, Sampson N S , et al. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry, 1999,38(14):4277-4286.
doi: 10.1021/bi982497j
[16]   Li J, Vrielink A, Brick P , et al. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry, 1993,32(43):11507-11515.
doi: 10.1021/bi00094a006 pmid: 8218217
[1] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[3] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[4] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[5] ZHANG Yu-fu, WANG Jian-wen, LI Song-tao, ZHU Zhang-liang, LU Fu-ping, MAO Shu-hong, QIN Hui-min. The Expression, Purification and Structural Analysis of Cholesterol Oxidase ChOG[J]. China Biotechnology, 2017, 37(6): 43-49.
[6] ZHANG Jing, ZHANG Yu fu, QIN Hui min, MAO Shu hong, LU Fu ping. Construction of Artificial Arthrobacter simplex for Oxidizing Cholesterol, and Optimization of Bioconversion Condition[J]. China Biotechnology, 2016, 36(11): 70-75.
[7] SHI Xian-wei, ZHANG Wei-tao, ZHANG Xiao-fei, YANG Guang-yu, FENG Yan. The Heterologous Expression and Characterization of Lytic Polysaccharide Monooxygenase from Actinosynnema mirum DSM 43827[J]. China Biotechnology, 2014, 34(7): 17-23.
[8] HE Xiao-juan, XUE Zheng-lian, ZHAO Zhi-jun, SUN Jun-song, SHI Ji-ping. Cloning of an Mn-catalase Gene from Thermus thermophilus and Its Expression in Escherichia coli[J]. China Biotechnology, 2014, 34(2): 52-58.
[9] ZHANG Yan-mei, ZENG Hong-yan, CAI Xi-ling, XIONG Long-bin, ZHANG Cun-ying, HOU Qian. Research of Hg2+ Effect on the Catalytic Activity of Papain and Its Inhibition Mechanism[J]. China Biotechnology, 2012, 32(01): 87-91.
[10] YU Bo-Hua, CA Yu-Jie, LIAO Xiang-Ru, YUN Li-Gong, TUN Hui-An, ZHANG Da-Bing. Optimization of Fermentation Condition for a Cold-active Lipase and Enzymatic Characterization[J]. China Biotechnology, 2010, 30(03): 67-73.
[11] . The substrate specificity of mutant cyclic imide hydrolases[J]. China Biotechnology, 2007, 27(6): 46-50.