Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (5): 66-72    DOI: 10.13523/j.cb.20180509
    
Co-expression Construction of Qβ Phage Virus-like Particles Presenting Human Interleukin-13 Antigenic Peptide
Hong-mei BAI,Wei-wei HUANG,Cun-bao LIU,Wen-jia SUN,Xu YANG,Yan-bing MA()
Institute of Medical Biology,Chinese Academy of Medical Science & Peking Union Medical College,Kunming 650118,China
Download: HTML   PDF(1111KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To construct Qβ phage virus-like particles (VLPs) vaccines presenting human interleukin-13 (IL-13) antigen peptide.Methods:The human IL-13 antigen peptide was genetically recombined into the C terminus of the Qβ phage capsid protein (CP). In BL21 bacteria, the native CP and the recombinant CP with C terminal fused with IL-13 antigen peptide (CP / IL-13) were induced simultaneously by IPTG. VLPs were purified by ammonium sulfate precipitation and sucrose density gradient centrifugation, and the presence of chimeric VLPs was analyzed. The purity of VLPs was analyzed by HPLC and the morphology of the particles was observed by electron microscopy. The mice were subcutaneously immunized with VLPs and sera were collected for detection of human IL-13-specific IgG antibodies by ELISA. RESULTS: The recombinant protein CP and CP / IL-13 were successfully expressed. Both of them appeared in the same fractions of collected samples from density gradient centrifugation and had the same sedimentation behavior as the native Qβ VLPs, while CP / IL-13 alone had no Qβ particle behavior. After purification, high purity particles were obtained. The chimeric particles were similar in shape to Qβ particles. In addition, the VLPs vaccine induced mice to develop an IL-13-specific antibody response.Conclusion:The co-expression strategy can successfully construct chimeric VLPs presenting human IL-13 epitopes, and provide a vaccine form with potentials for clinical application antagonizing the pathological effects of IL-13 in severe human diseases.



Key wordsInterleukin-13      Virus-like particles      Vaccine     
Received: 14 January 2018      Published: 05 June 2018
ZTFLH:  Q819  
Corresponding Authors: Yan-bing MA     E-mail: may@imbcams.com.cn
Cite this article:

Hong-mei BAI,Wei-wei HUANG,Cun-bao LIU,Wen-jia SUN,Xu YANG,Yan-bing MA. Co-expression Construction of Qβ Phage Virus-like Particles Presenting Human Interleukin-13 Antigenic Peptide. China Biotechnology, 2018, 38(5): 66-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180509     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I5/66

名称 寡核苷酸序列(5'→3')
IL-13抗原肽 正链GATCCGTTCCGCCGTCTACCGCTCTGCGTGAACTGATCGAAGAACTGGTTAACATCACCCAGG
负链AATTCCTGGGTGATGTTAACCAGTTCTTCGATCAGTTCACGCAGAGCGGTAGACGGCGGAACG
启动子1-CP 正链CATGCCATGGCAAAATTAGAGACTGTTA
负链ATCCCTGCAGTTAATACGCTGGGTTCAGCTGA
启动子2- CP/X 正链GAGCATATGGCAAAATTAGAGA
负链AAGGGTACCTTAGAATTCGCCACCGGA
启动子1- CP/X 正链CATGCCATGGCAAAATTAGAGACTGTTA
负链AAGCTGCAGTTAGAATTCGCCACCGGA
启动子2- CP 正链GAGCATATGGCAAAATTAGAGA
负链AAGGGTACCTTAATACGCTGGGTTCAGCTGA
Table 1 Human IL-13 antigen peptide nucleotide sequences and PCR amplification primers
Fig.1 pRSFDuet1 plasmid map
Fig.2 The expression and density gradient centrifugation analysis of the recombinant proteins (a),(c)The co-expression of CP and CP / IL-13 M:Protein marker;1:pRSFDuet1-CP- CP/IL-13 or pRSFDuet1- CP/IL-13-CP without the induction of IPTG;2: pRSFDuet1-CP- CP/IL-13 or pRSFDuet1- CP/IL-13-CP induced by IPTG for 3h;3:The supernatant of induced bacterial cells;4:The precipitate of induced bacterial cells (a)pRSFDuet1-CP- CP/IL-13 (c) pRSFDuet1- CP/IL-13-CP (b),(d) Sucrose density gradient centrifugation analysis of recombinant CP- CP/IL-13 or CP/IL-13-CP M:Protein marker;1-12:The sample fractions from the sucrose density gradient centrifugation collected from top to bottom (b)pRSFDuet1-CP- CP/IL13 (c)pRSFDuet1- CP/IL13-CP (e) Sucrose density gradient centrifugation analysis of CP M:Protein marker;1-12:The sample fractions from the sucrose density gradient centrifugation collected from top to bottom
Fig.3 HPLC analysis of recombinant protein and electronic microscopy of VLPs (a) HPLC profile of recombinant CP/IL-13-CP (b) HPLC profile of recombinant CP (c) Electronic microscopy of CP/IL-13- CPVLPs
Fig.4 Determination of IL-13 antibody levels in sera of the immunized mice by ELISA
[1]   Doran E, Cai F , Holweg C T J,et al. Interleukin-13 in asthma and other eosinophilic disorders. Frontiers in Medicine, 2017,4:139.
doi: 10.3389/fmed.2017.00139 pmid: 29034234
[2]   Devos F C, Pollaris L, Cremer J , et al. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice. PLoS One, 2017,12(7):e0180690.
doi: 10.1371/journal.pone.018069010.1371/journal.pone.0180690.g00110.1371/journal.pone.0180690.g00210.1371/journal.pone.0180690.s001 pmid: 5509233
[3]   Parulekar A D, Kao C C, Diamant Z , et al. Targeting the interleukin-4 and interleukin-13 pathways in severe asthma: current knowledge and future needs. Current Opinion in Pulmonary Medicine, 2018,24(1):50-55.
doi: 10.1097/MCP.0000000000000436
[4]   Hambly N, Nair P . Monoclonal antibodies for the treatment of refractory asthma. Current Opinion in Pulmonary Medicine, 2014,20(1):87-94.
doi: 10.1097/MCP.0000000000000007 pmid: 24275927
[5]   Holgate S T, Chuchalin A G, Hebert J , et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 2004,34(4):632-638.
doi: 10.1111/j.1365-2222.2004.1916.x pmid: 15080818
[6]   Yring S, Gottlieb A, Papp K , et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet, 2006,367(9504):29-35.
doi: 10.1016/S0140-6736(05)67763-X pmid: 16399150
[7]   Borish L C, Nelson H S, Corren J , et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. The Journal of Allergy and Clinical Immunology, 2001,107(6):963-970.
doi: 10.1067/mai.2001.115624 pmid: 11398072
[8]   Chu X, Li Y, Long Q , et al. Chimeric HBcAg virus-like particles presenting a HPV 16 E7 epitope significantly suppressed tumor progression through preventive or therapeutic immunization in a TC-1-grafted mouse model. International Journal of Nanomedicine, 2016,11:2417-2429.
doi: 10.2147/IJN.S102467 pmid: 4892837
[9]   孙文佳, 姚宇峰, 杨旭 , 等. 乙肝核心抗原病毒样颗粒呈现HPV16L1抗原表位及特异抗体诱导. 中国生物工程杂志, 2017,37(3):58-64.
doi: 10.13523/j.cb.20170308
[9]   Sun W J, Yao Y F, Yang X , et al. Presentation of HPV 16L1 peptide-based HBcAg virus-like particle and induction of specific antibody. China Biotechnology, 2017,37(3):58-64.
doi: 10.13523/j.cb.20170308
[10]   Long Q, Huang W, Yao Y , et al. Virus-like particles presenting interleukin-33 molecules: immunization characteristics and potentials of blockingIL-33/ST2 pathway in allergic airway inflammation. Human Vaccines & Immunotherapeutics, 2014,10(8):2303-2311.
doi: 10.4161/hv.29425 pmid: 25424936
[11]   唐增华, 龙琼, 姚宇峰 , 等. 呈现人白细胞介素-13抗原表位的病毒样颗粒疫苗的构建. 中国生物制品学杂志, 2013,26(11):1533-1539.
[11]   Tang Z H, Long Q, Yao Y F , et al. Construction of virus-like particles embedding B cell epitope of human interleukin-13. Chin J Biologicals, 2013,26(11):1533-1539.
[12]   Jat K R, Walia D K , Khairwa A. Anti-IgE therapy for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. The Cochrane Database of Systematic Reviews, 2015,( 11):CD010288.
doi: 10.1002/14651858.CD010288.pub3 pmid: 24043500
[13]   Holgate S, Casale T, Wenzel S , et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. The Journal of Allergy and Clinical Immunology, 2005,115(3):459-465.
doi: 10.1016/j.jaci.2004.11.053
[14]   Scott D L, Kingsley G H . Tumor necrosis factor inhibitors for rheumatoid arthritis. The New England Journal of Medicine, 2006,355(7):704-712.
doi: 10.1056/NEJMct055183
[15]   Scott D L, Ibrahim F, Farewell V , et al. Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: TACIT non-inferiority randomised controlled trial. BMJ, 2015,350:h1046.
doi: 10.1136/bmj.h1046 pmid: 25769495
[16]   Iwanczak B M, Kierkus J, Ryzko J , et al. Induction and maintenance infliximab therapy in children with moderate to severe ulcerative colitis: Retrospective, multicenter study. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 2017,26(1):57-61.
doi: 10.17219/acem/35802 pmid: 28397433
[17]   Sandborn W J . New concepts in anti-tumor necrosis factor therapy for inflammatory bowel disease. Reviews in Gastroenterological Disorders, 2005,5(1):10-18.
pmid: 15741928
[18]   Ma Y , HayGlass K T,Becker A B,et al. Novel recombinant interleukin-13 peptide-based vaccine reduces airway allergic inflammatory responses in mice. American Journal of Respiratory and Critical Care Medicine, 2007,176(5):439-445.
doi: 10.1164/rccm.200610-1405OC pmid: 17556715
[19]   Nardin EH, Oliveira G A , Calvo-Calle J M,et al. Phase I testing of a malaria vaccine composed of hepatitis B virus core particles expressing Plasmodium falciparum circumsporozoite epitopes. Infection and Immunity, 2004,72(11):6519-6527.
doi: 10.1128/IAI.72.11.6519-6527.2004 pmid: 523031
[20]   Cornuz J, Zwahlen S, Jungi W F , et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One, 2008,3(6):e2547.
doi: 10.1371/journal.pone.0002547 pmid: 2432028
[21]   Doucet M, El-Turabi A, Zabel F , et al. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PloS One, 2017,12(8):e0181844.
doi: 10.1371/journal.pone.0181844 pmid: 55523170181844005
[22]   Low JG, Lee L S, Ooi E E , et al. Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine: results from a double-blinded, randomized phase I clinical trial in healthy Asian volunteers. Vaccine, 2014,32(39):5041-5048.
doi: 10.1016/j.vaccine.2014.07.011 pmid: 25045806
[23]   Spohn G, Schori C, Keller I , et al. Preclinical efficacy and safety of an anti-IL-1beta vaccine for the treatment of type 2 diabetes. Molecular Therapy Methods & Clinical Development, 2014,1:14048.
[24]   Brown S D, Fiedler J D, Finn M G . Assembly of hybrid bacteriophage Qbeta virus-like particles. Biochemistry, 2009,48(47):11155-11157.
doi: 10.1021/bi901306p pmid: 19848414
[1] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[2] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[3] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[4] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[5] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[6] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[7] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[8] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[9] WANG Guo-qiang,YU Yin-yin,ZENG Hua-hui,WANG Xu-dong,WU Yu-bin,SHANG Li-zhi,LI Yu-lin,ZHANG Yi-qing,ZHANG Xi-xi,ZHANG Zhen-qiang,WANG Yun-long. Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles[J]. China Biotechnology, 2020, 40(12): 31-40.
[10] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[11] FENG Xue-jiao,HOU Hai-long,YU Qiong,WANG Jun-shu. Market Analysis and Countermeasures of Cervical Cancer Vaccine in China[J]. China Biotechnology, 2020, 40(11): 96-101.
[12] WANG Yan-wei,LI Peng-hao,LIANG Yan-yu,GUAN Yang,PANG Wen-qiang,TIAN Ke-gong. Efficient Assembly of Virus-like Particles of Porcine Circovirus Type 2[J]. China Biotechnology, 2020, 40(11): 35-42.
[13] Yan GAO,Jing-jing DU,Bin WANG,Qi LIU,Zhi-qiang SHEN. Study on β-Propiolactone in Inactivation Process of Rabies Vaccine by Gas Chromatography[J]. China Biotechnology, 2019, 39(6): 25-31.
[14] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[15] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.