Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (5): 40-46    DOI: 10.13523/j.cb.20180506
    
Design and Construction of Tumor Precision Medicine Knowledge Database
Ling WANG1,Xin CHEN2,*
1 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
2 Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   PDF(846KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To integrate substantial but scattered state-of-the-art precision medicine knowledge and form a systematic knowledge network, to support clinical application of individual omics data, aiming at precision medication recommendations.Methods:The database was constructed using MySQL. Precision medicine knowledge from FDA companion diagnosis, NCCN guidelines, My Cancer Genome and GDSC was manually collected in a unified format after being standardized and structured.Results:The tumor precision medicine knowledge base (PMKB) was successfully designed and constructed and has already collected 1 940 clinical directives, covering 14 kinds of variations.Conclusion:PMKB collects information relating tumor mutations and therapeutic strategies, which can provide personalized treatments of reference. PMKB is also the base of constructing a clinical decision support system of precision medicine.



Key wordsTumor      Precision medicine      Database      Omics data     
Received: 12 October 2017      Published: 05 June 2018
ZTFLH:  Q354  
Corresponding Authors: Xin CHEN   
Cite this article:

Ling WANG,Xin CHEN. Design and Construction of Tumor Precision Medicine Knowledge Database. China Biotechnology, 2018, 38(5): 40-46.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180506     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I5/40

Fig.1 Entity relationship diagram of PMKB
Clinical
directive ID
Indication
complex ID
Therapeutic
strategy ID
CD1 CI1 TS1
CD2 CI2 TS2
Table 1 Clinical directive table
Fig.2 Logic decomposition illustration of complex indication
Indication complex ID Operator
CI1 or
CI2 and
CI3 not
Table 2 Indication complex table
Indication
complex ID
Indication
type
Component
order
Indication
complex ID
Indication
atomic ID
CI1 complex 1 CI2
CI1 complex 2 CI3
CI2 atomic 1 AI1
CI2 atomic 2 AI2
CI3 atomic 1 AI3
Table 3 Complex indication components table
Indication atomic ID Indication atomic type
AI1 基因突变
AI2 基因突变
AI3 基因突变
Table 4 Indication atomic table
Therapeutic strategy ID Therapeutic strategy
omponents ID
TS1 TSC1
TS1 TSC2
Table 5 Therapeutic strategy table
Therapeutic
strategy
components ID
Components
type
Therapeutic
strategy
components
TSC1 靶向治疗 Drug A
TSC2 化疗 Drug B
Table 6 Therapeutic strategy components table
数据来源 临床用药指导
记录条数
FDA 44
NCCN 70
My Cancer Genome 58
GDSC 1 768
总计 1 940
Table 7 The number of clinical directives collected in PMKB
数据表名称 英文表名 记录条数
临床用药指导表 clinical_directive 1 940
注释表 annotation 65 601
治疗策略表 therapeutic_strategy 499
治疗策略成分表 therapeutic_strategy_components 351
综合指征表 indication_complex 2 835
综合指征成分表 indication_complex_components 6 006
分子指征表 indication_atomic 2 301
高甲基化表 feature_gene_hypermethylation 501
拷贝数变异表 feature_gene_copy_number_variation 359
基因融合表 feature_gene_fusion 12
基因融合状态未知表 feature_gene_fusion_unknown 1
基因表达异常表 feature_gene_expression 1
信号通路激活状态表 feature_pathway_activity 22
蛋白质表达异常表 feature_protein_expression 24
基因突变表 feature_gene_mutations 995
基因未突变表 feature_gene_no_mutations 5
基因突变状态未知表 feature_gene_status_unknown 1
外显子突变表 feature_gene_exon_mutation 14
单核苷酸多态性表 feature_gene_coding_snp 19
染色体变异表 feature_chromosome_mutation 1
其他临床指征表 feature_other_clinical_indication 94
Table 8 The number of records collected in PMKB
Fig.3 Illustration of precision medication searching system
[1]   Stratton M R, Campbell P J, Futreal P A . The cancer genome. Nature, 2009,458(7239):719-724.
doi: 10.1038/nature07943
[2]   付文华, 钱海利, 詹启敏 . 中国精准医学发展的需求和任务. 中国生化药物杂志, 2016,36(4):1-4.
[2]   Fu W H, Qian H L, Zhan Q M . Precision medicine in China. Chinese Journal of Biochemical Pharmaceutics, 2016,36(4):1-4.
[3]   Garraway L A, Verweij J, Ballman K V . Precision oncology: an overview. Journal of Clinical Oncology, 2013,31(15):1803-1805.
doi: 10.1200/JCO.2013.49.4799
[4]   Sorich M J, Wiese M D, Rowland A , et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Annals of Oncology, 2015,26(1):13-21.
doi: 10.1093/annonc/mdu378 pmid: 25115304
[5]   Allegra C J, Rumble R B, Richard L S , et al. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American society of clinical oncology provisional clinical opinion update 2015 summary. Journal of Clinical Oncology, 2016,34(2):179-185.
[6]   Ali S M, Hensing T, Schrock A B , et al. Comprehensive genomic profiling identifies a subset of crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist, 2016,21(6):762-770.
doi: 10.1634/theoncologist.2015-0497
[7]   Rankin A, Klempner S J, Erlich R , et al. Broad detection of alterations predicted to confer Lack of benefit from EGFR antibodies or sensitivity to targeted therapy in advanced colorectal cancer. Oncologist, 2016,21(11):1306-1314.
doi: 10.1634/theoncologist.2016-0148 pmid: 27682134
[8]   Boussemart, Wang A , Wong M K K, et al. Hybrid-capture based genomic profiling identifies BRAF V600 and non-V600 alterations in melanoma samples negative by prior testing. Annals of Oncology, 2017,28(suppl_5):v428-v448.
doi: 10.1093/annonc/mdx377.020
[9]   Kusnoor S V, Koonce T Y, Levy M A , et al. My cancer genome: evaluating an educational model to introduce patients and caregivers to precision medicine information. AMIA Joint Summits on Translational Science, 2016,( 2016):112-121.
pmid: 5001739
[10]   Levy M, Lovly C, Horn L , et al. My cancer genome: Web-based clinical decision support for genome-directed lung cancer treatment. Journal of Clinical Oncology, 2011,29(15 suppl):7576.
doi: 10.1093/annonc/mdr431
[11]   Iorio F, Knijnenburg T, Vis D , et al. A landscape of pharmacogenomic interactions in cancer. Cell, 2016,166(3):740.
doi: 10.1016/j.cell.2016.06.017 pmid: 27397505
[12]   Castaneda C, Nalley K, Mannion C , et al. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. Journal of Clinical Bioinformatics, 2015,5(1):4.
doi: 10.1186/s13336-015-0019-3 pmid: 4381462
[13]   Fridlyand J, Simon R M, Walrath J C , et al. Considerations for the successful co-development of targeted cancer therapies and companion diagnostics. Nature Reviews Drug Discovery, 2013,12(10):743.
doi: 10.1038/nrd4101 pmid: 24008432
[14]   Mansfield E A . FDA perspective on companion diagnostics: an evolving paradigm. Clinical Cancer Research, 2014,20(6):1453-1457.
doi: 10.1158/1078-0432.CCR-13-1954 pmid: 24634468
[15]   National Comprehensive Cancer Network. About NCCN.[2017-12-27]. .
[16]   National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: non-small cell lung.[2017-12-27]. .
[17]   Vanderbilt-Ingram Cancer Center, My Cancer Genome (Website Index). [2017-12-27]..
[18]   Yang W, Soares J, Greninger P , et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 2013,41:D955-D961.
[19]   Al-Haddad M A, Friedlin J, Kesterson J , et al. Natural language processing for the development of a clinical registry: a validation study in intraductal papillary mucinous neoplasms. HPB, 2010,12(10):688-695.
doi: 10.1111/j.1477-2574.2010.00235.x
[20]   Koh H C, Tan G . Data mining applications in healthcare. Journal of Healthcare Information Management, 2005,19(2):64-72.
doi: 10.4314/ijonas.v5i1.49926 pmid: 15869215
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[6] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[7] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[8] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[11] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[12] HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids[J]. China Biotechnology, 2020, 40(12): 82-87.
[13] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[14] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[15] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.