Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 63-69    DOI: 10.13523/j.cb.20180409
    
Large-Scale Synthesis of Acyl-ACPs
Wei DING1,2,Yan-bin FENG1,Xu-peng CAO1,Song XUE1()
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(1199KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Acyl-acyl carrier proteins (acyl-ACPs) are substrates for many biosynthesis pathways. However, acyl-ACP is substituted by acyl-CoA for studies in vitro as a result of supply restriction, which causes many questions in enzymatic analysis. Thus, obtaining large scale of acyl-ACP steadily is very important to study the related enzymes and metabolic pathways in vitro. acyl-ACP synthetase catalyze the conversion of holo-ACP using fatty acid as acyl donor in vitro while no productivity has been reported before. Here an acyl-ACP synthetase from Vibrio harveyi was used to catalyze the synthesis of (C4~C18) with holo-ACP, and the yield of acyl-ACP was confirmed by high performance liquid chromatography (HPLC). The results indicated that the yields of medium chains (C4~C14) acyl-ACPs were more than 90.0% while the long chain yields of 16:0-ACP and 18:1-ACP were 85.9% and 25.7%, respectively. Via introducing Li + to the reaction system, the yield of long chain acyl-ACPs were elevated above 90.0%。Then the reaction parameters were optimized in the enlarged reaction system, and more than 20mg acyl-ACPs were steadily obtained. Additionally, two species of holo-ACP were used to validate the versatility of the reaction system. Finally the acyl-ACP activity was conformed using a glycerol-3-phosphate acyltransferase. The synthesis of different chain acyl-ACPs are of great significance for research of the catalysis mechanism of related enzymes.



Key wordsacyl-ACP synthetase      acyl-ACP      HPLC     
Received: 30 January 2018      Published: 08 May 2018
ZTFLH:  Q816  
Cite this article:

Wei DING,Yan-bin FENG,Xu-peng CAO,Song XUE. Large-Scale Synthesis of Acyl-ACPs. China Biotechnology, 2018, 38(4): 63-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180409     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/63

参与的反应和代谢过程 参考文献
硫酯酶 催化不同链长acyl-ACP水解;参与脂肪酸、聚酮类抗生素合成 [1]
脂肪酸去饱和酶 催化acyl-ACP去饱和;参与不饱和脂肪酸合成 [9]
甘油-3-磷酸酰基转移酶 催化acyl-ACP和甘油-3-磷酸反应,生成LPA;参与磷脂合成 [2]
聚酮合酶 催化酮脂酰ACP缩合;参与聚酮类抗生素的合成 [3]
UDP-氨基葡萄糖
乙酸酐酰基转移酶
催化β-羟肉豆蔻酸和UDP-氨基葡萄糖乙酸酐,生成UDP-3-单酰氨基葡萄糖乙酸酐;
参与类脂A的合成
[4]
Table 1 Enzymes using acyl-ACP as substrates
Fig.1 Synthesis of acyl-ACP using acyl-ACP synthetase
时间
(min)
流量
(ml/min)
乙腈
(%)

(1‰三氟乙酸)
0 1 35 65
15 1 55 45
16 1 35 65
20 1 35 65
Table 2 Gradient condition of mobile phase for HPLC
合成体系中各成分 50μl合成体系
各成分含量1)
20ml合成体系
各成分含量2)
FA-Na (μmol/L) 150 200
holo-ACP (μmol/L) 50 75
MgCl2 (mmol/L) 10 10
Li2SO4 (mmol/L) 10 10
ATP (mmol/L) 5 10
DTT (mmol/L) 2 2
Tris-HCl (mmol/L) 25 25
温度 (℃) 30 30
时间 (h) 0.5 2
Table 3 The synthesis systems of the acyl-ACP
Fig.2 HPLC analysis of apo- and holo-ACP
acyl-ACP 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
4:0-ACP 6.63 4 567.56 4 432.46 97.0
6:0-ACP 7.77 6 015.08 5 616.05 93.4
8:0-ACP 8.52 3 513.82 3 460.80 98.5
10:0-ACP 9.75 10 421.60 9 372.87 90.0
12:0-ACP 11.07 6 816.42 6 607.80 96.9
14:0-ACP 12.48 4 073.94 3 676.46 90.2
16:0-ACP 13.57 2 201.83 1 890.69 85.9
18:1-ACP 13.89 2 201.83 565.83 25.7
Table 4 The retention time and yield of different chain length acyl-ACPs
反应体系 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
a 18:1-ACP, 0.5% Triton X-100 14.61 2 201.83 785.83 35.8
b 18:1-ACP,10mmol/L Li2SO4 13.89 2 190.19 1 943.85 88.8
c 16:0-ACP,10mmol/L Li2SO4 13.58 2 190.19 2 092.82 95.5
Table 5 The synthetic efficiency of acyl-ACP in different reaction
Fig.3 HPLC chromatograms of Sp6803 ACPs
(a) holo-ACP and apo-ACP (b) 18:1-ACP
反应体系 保留时间(min) Aholo-ACP Aacyl-ACP 产率(%)
a Table 1.2.3b with 5mmol/L ATP 14.61 9 962.66 5 123.59 51.4
b Table 1.2.3b with 10mmol/L ATP 14.61 9 962.66 8 485.48 85.2
Table 6 Optimization of 18:1-ACP synthesis in large-scale
Fig.4 The bioactivity assays of acyl-ACPs with glycerol-3- phosphate acyltransferase in vitro
Lane 1: Standard LPA (17:0); Lane 2: Negative control; Lane 3: E.coli 16:0-ACP as substrate; Lane 4: E.coli 18:1-ACP as substrate; Lane 5: Sp6803 18:1-ACP as substrate
[1]   Magnuson K, Jackowski S, Rock C O , et al. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Rev, 1993,57(3):522-542.
[2]   Rock C O, Jackowski S . Regulation of phospholipid synthesis in Escherichia coli. J Biol Chem, 1982,257(18):10759-10765.
[3]   Katz L, Donadio S . Polyketide synthesis-prospects for hybrid antibiotics. Annu Rev Microbiol, 1993,47(1):875-912.
doi: 10.1146/annurev.mi.47.100193.004303 pmid: 8257119
[4]   Anderson M S , Raetz C R H. Biosynthesis of Lipid A Precursors in Escherichia coli. A membrane-bound enzyme that transfers a palmitoyl residue from a glycerophospholipid to lipid X. J Biol Chem, 1987,262(11):5170-5179.
pmid: 3549717
[5]   Parris K D, Lin L, Tam A , et al. Crystal structures of substrate binding to Bacillus subtilis holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites. Structure, 2000,8(8):883-895.
doi: 10.1016/S0969-2126(00)00178-7 pmid: 10997907
[6]   Mayo K H, Prestegard J H . Acyl carrier protein from Escherichia coli. Structural characterization of short-chain acylated acyl carrier proteins by NMR. Biochemistry, 1985,24(26):7834-7838.
doi: 10.1021/bi00347a049 pmid: 3912008
[7]   Rock C O, Cronan J E . Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochem Biophys Acta, 1996,1302(1):1-16.
doi: 10.1016/0005-2760(96)00056-2 pmid: 8695652
[8]   Sarria S, Kruyer N S, Peraltayahya P . Microbial synthesis of medium-chain chemicals from renewables. Nature Biotechnology, 2017,35(12):1158-1158.
doi: 10.1038/nbt.4022 pmid: 29220020
[9]   Cahoon E B, Lindqvist Y, Schneiider G , et al. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci, 1997,94(10):4872-4877.
doi: 10.1073/pnas.94.10.4872 pmid: 9144157
[10]   Byers D M, Holmes C G . A soluble fatty acyl - acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi. Biochemistry and Cell Biology, 1990,68(7-8):1045-1051.
doi: 10.1139/o90-154 pmid: 2223012
[11]   Rock C O, Cronan J E. Solubilization , Purification, salt activation of acyl-acyl carrier protein synthetase from Escherichia coli. J Biol Chem, 1979,254(15):7116-7122.
[12]   Gangar A, Karande A A, Rajasekharan R . Purification and characterization of acyl-acyl carrier protein synthetase from oleaginous yeast and its role in triacylglycerol biosynthesis. Biochem J, 2001,360(2):471-479.
doi: 10.1042/0264-6021:3600471 pmid: 11716776
[13]   Beld J, Finzel K, Burkart M D . Versatility of acyl-acyl carrier protein synthetases. Chemistry & Biology, 2014,21(10):1293-1299.
doi: 10.1016/j.chembiol.2014.08.015 pmid: 25308274
[14]   Kaczmarzyk D, Fulda M . Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiology, 2010,152(3):1598-1610.
doi: 10.1104/pp.109.148007
[15]   Kuo T M, Ohlrogge J B . Acylation of plant acyl carrier proteins by acyl-acyl carrier protein synthetase from Escherichia coli. Arch Biochem Biophys, 1984,230(1):110-116.
doi: 10.1016/0003-9861(84)90091-2 pmid: 6370139
[16]   Liu T, Vora H, Khosla C . Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng, 2010,12(4):378-386.
doi: 10.1016/j.ymben.2010.02.003 pmid: 20184964
[17]   Jiang H, Zirkle R, Metz J G , et al. The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis. J Am Chen Soc, 2008,130(20):6336-6337.
doi: 10.1021/ja801911t pmid: 18444614
[18]   Jiang Y F, Chan C H, Cronan J E . The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006,45(33):10008-10019.
doi: 10.1021/bi060842w pmid: 16906759
[19]   Ouyang L L, Li H, Yan X Y , et al. Site-directed mutagenesis from arg195 to His of a microalgal putatively chloroplastidial glycerol-3-phosphate acyltransferase causes an increase in phospholipid levels in yeast. Frontiers in Plant Science, 2016,7:286.
doi: 10.3389/fpls.2016.00286 pmid: 4785142
[20]   Post-Beittenmiller D, Jaworski J G, Ohlrogge J B . In vivo pools of free and acylated acyl carrier proteins in spinach. Evidence for sites of regulation of fatty acid biosynthesis. J Biol Chem, 1991,266(3):1858-1865.
pmid: 1988450
[21]   Rock C O, Cronan J E, Armitage I M . Molecular properties of acyl carrier protein derivatives. J Biol Chem, 1981,256(6):2669-2674.
doi: 10.1016/0165-022X(81)90075-0 pmid: 7009596
[22]   Bi H, Wang H, Cronan J E . FabQ, a dual-function dehydratase/isomerase, circumvents the last step of the classical fatty acid synthesis cycle. Chemistry & Biology, 2013,20(9):1157-1167.
doi: 10.1016/j.chembiol.2013.07.007 pmid: 4562794
[23]   Lin S, Hanson R E, Cronan J E . Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol, 2010,6(9):682-682.
doi: 10.1038/nchembio.420 pmid: 20693992
[24]   Patel A, Malinovska L, Saha S , et al. ATP as a biological hydrotrope. Science, 2017,356(6339):753-756.
doi: 10.1126/science.aaf6846 pmid: 28522535
[1] SHEN Wei-tao, WANG Ming-yu, WANG Yun-kun, WANG Xin-hua, XU Hai. Analysis of Antibiotics Quantification Methods[J]. China Biotechnology, 2016, 36(6): 119-126.
[2] YANG Yang, YANG Jiang-ke, XIONG Wei, LIANG Jian-fang, DUAN Wei-wei, CHAO Qun-fang. Cloning and Expression of Dioxygenase Gene from Aeromonas sp. XJ-6 and Promoting Degradation of Tyr[J]. China Biotechnology, 2016, 36(5): 59-67.
[3] ZHU Kuan-peng, ZHAO Shu-jin. Double-stranded RNA-mediated Gene Silencing and Over-expression of FmSTS in Polygonum multiflorum Thunb Hairy Roots[J]. China Biotechnology, 2012, 32(08): 41-48.
[4] HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao. Transformation and Genetic Analysis of Maize with the Lycb[J]. China Biotechnology, 2012, 32(07): 43-48.
[5] TANG Xi-xiang, YI Zhi-wei, LI Ning, MA Qun, LI Hui, QIN Dan, XIAO Xiang. Bioactivity Screening of Fermentation Crude Extracts from Deep Sea Metagenomic Library Clones[J]. China Biotechnology, 2011, 31(06): 58-63.
[6] LIU A-Na, ZHOU Min-Yi, SONG Wen-Jin, LIU Jian-Beng. Determination of Content of Recombinant Human Interferon α1b Dry Powder Inhalation by HPLC[J]. China Biotechnology, 2010, 30(05): 92-95.
[7] . Differentiation of fish gelatin from bovine/porcine gelatin by tandem mass spectrometry[J]. China Biotechnology, 2009, 29(06): 101-107.
[8] . Detection of S-Adenosyl-L-methionine in Fermentation Liquid by HPLC-UV[J]. China Biotechnology, 2007, 27(11): 73-76.
[9] . Study on Biosynthesis of Carotenoids Using Rhodotorula RY-051[J]. China Biotechnology, 2006, 26(0): 128-131.