Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (3): 76-80    DOI: 10.13523/j.cb.20180310
Orginal Article     
Research Progress of Small Molecule Compounds in Neural Differentiation of Stem Cells
Guang-ran LI1,Wei WANG1,2,3()
1 The First Affiliated Hospital, Jinzhou Medical University,Jinzhou 121000, China
2 Department of Orthopedics Research Institute, Jinzhou Medical University,Jinzhou 121000, China
2 Department of Orthopedics Research Institute, Jinzhou Medical University,Jinzhou 121000, China
Download: HTML   PDF(386KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Nervous system diseases occur in the central, peripheral, autonomic nervous system with sensory, motor, consciousness, autonomic nervous dysfunction as the main manifestation of the disease, is currently one of the most harmful to human diseases. With the development of stem cell biology, human beings have made remarkable progress in inducing neural differentiation of stem cells and may solve the key problems of nerve repair and regeneration. Small molecule compounds are increasingly used to intervene and study the biological behaviors of stem cells such as proliferation, differentiation and reprogramming because of their obvious advantages in convenience, controllability and functional diversity.The progress of neural cell differentiation induced by small molecule compounds in stem cells is reviewed.



Key wordsSmall      molecule      compound      Stem      cell      Neuronal      differentiation      Transdifferentiation     
Received: 31 July 2017      Published: 04 April 2018
ZTFLH:  Q813  
Cite this article:

Guang-ran LI,Wei WANG. Research Progress of Small Molecule Compounds in Neural Differentiation of Stem Cells. China Biotechnology, 2018, 38(3): 76-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180310     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I3/76

[1]   Xu Y, Shi Y, Ding S . A chemical approach to stem-cell biology and regenerative medicine. Nature, 2008,453(7193):338-344.
doi: 10.1038/nature07042
[2]   Kriks S, Shim J W, Piao J , et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 2011,480(7378):547-551.
doi: 10.1038/nature10648 pmid: 22056989
[3]   Zhang Y, Li W, Laurent T , et al. Small molecules,big roles--the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci, 2012,125(23):5609-5620.
doi: 10.1242/jcs.096032
[4]   Thomson J A, Itskovitz-Eldor J, Shapiro S S , et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998,282(5391):1145-1147.
doi: 10.1126/science.282.5391.1145 pmid: 9804556
[5]   Neely M D, Litt M J, Tidball A M , et al. DMH1,a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs:comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci, 2012,3(6):482-491.
doi: 10.1021/cn300029t pmid: 22860217
[6]   刘镕, 赵琴平, 董惠芬 , 等. TGF-β信号传导通路及其生物学功能. 中国病原生物学杂志, 2014,9(1):77-83.
[6]   Liu R, Zhao Q P, Dong H F , et al. The TGF-β signaling pathways and their biological functions. Journal of Pathogen Biology, 2014,9(1):77-83.
[7]   陈兵, 易斌, 鲁开智 . Smad蛋白家族调控细胞分化的研究进展. 医学研究生学报, 2013,26(5):544-547.
doi: 10.3969/j.issn.1008-8199.2013.05.024
[7]   Chen B, Yi B, Lu K Z . Advances in researches on Smad proteins in cell differentiation. J Med Postgra, 2013,26(5):544-547.
doi: 10.3969/j.issn.1008-8199.2013.05.024
[8]   Elkabetz Y, Panagiotakos G, Al Shamy G , et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev, 2008,22(2):152-165.
doi: 10.1101/gad.1616208 pmid: 18198334
[9]   Park I H, Zhao R, West J A , et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008,451(7175):141-146.
doi: 10.1038/nature06534 pmid: 18157115
[10]   Chambers S M, Fasano C A, Papapetrou E P , et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009,27(3):275-280.
doi: 10.1038/nbt.1529 pmid: 19252484
[11]   Xu R H , Sampsell-Barron T L,Gu F,et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 2008,3(2):196-206.
doi: 10.1016/j.stem.2008.07.001 pmid: 18682241
[12]   Xu R H, Chen X, Li D S , et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol, 2002,20(12):1261-1264.
doi: 10.1038/nbt761 pmid: 12426580
[13]   D’Amour K A, Agulnick A D, Eliazer S , et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol, 2005,23(12):1534-1541.
doi: 10.1038/nbt1163 pmid: 16258519
[14]   Laflamme M A, Chen K Y, Naumova A V , et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007,25(9):1015-1024.
doi: 10.1038/nbt1327
[15]   Munoz-Sanjuan I, Brivanlou A H . Neural induction,the default model and embryonic stem cells. Nat Rev Neurosci, 2002,3(4):271-280.
doi: 10.1038/nrn786
[16]   Zhou J, Su P, Li D , et al. High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 2010,28(10):1741-1750.
doi: 10.1002/stem.v28:10
[17]   Shimojo, Onodera K , Doi- Torii Y,et al. Rapid,efficient,and simple motor neuron differentiation from human pluripotent stem cells. Mol Brain,2015,8(1):79-94.
doi: 10.1186/s13041-015-0172-4 pmid: 4666063
[18]   Mica Y, Lee G, Chambers S M , et al. Modeling neural crest induction,melanocyte specification,and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Reports, 2013,3(4):1140-1152.
doi: 10.1016/j.celrep.2013.03.025 pmid: 3681528
[19]   Du Z W, Chen H, Liu H , et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun, 2015,6(3):6626-6635.
doi: 10.1038/ncomms7626 pmid: 25806427
[20]   Chen X, Li Q, Xu H , et al. Sodium iodate influences the apoptosis, proliferation and differentiation potential of radial glial cells in vitro. Cell Physiol Biochem, 2014,34(4):1109-1124.
doi: 10.1159/000366325 pmid: 25277056
[21]   Liu H, Zhang S C . Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell Mol Life Sci, 2011,68(24):3995-4008.
doi: 10.1007/s00018-011-0770-y
[22]   Maury Y, C?me J, Piskorowski RA , et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol, 2015,33(1):89-96.
doi: 10.1038/nbt.3049 pmid: 25383599
[23]   Fasano C A, Chambers SM, Lee G , et al. Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell, 2010,6(4):336-347.
doi: 10.1016/j.stem.2010.03.001 pmid: 20362538
[24]   Hargus G, Cooper O, Deleidi M , et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci USA, 2010,107(36):15921-15926.
doi: 10.1073/pnas.1010209107 pmid: 20798034
[25]   Morizane A, Darsalia V, Guloglu M O , et al. A simple method for large-scale generation of dopamine neurons from human embryonic stem cells. J Neurosci Res, 2010,88(16):3467-3478.
doi: 10.1002/jnr.22515 pmid: 20981866
[26]   Xi J, Liu Y, Liu H , et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells, 2012,30(8):1655-1663.
doi: 10.1002/stem.1152 pmid: 22696177
[27]   李进, 侯俊, 胡敏 . 干细胞基础研究热点及应用难题. 解放军医学杂志, 2012,37(6):659-661.
[27]   Li J, Hou J, Hu M . Hot spots in fundamental stem cell research and their difficulties in application studies. Med J Chin PLA, 2012,37(6):659-661.
[28]   姜楠, 潘学峰 . 表观遗传学及现代表观遗传生物医药技术的发展. 生物技术通报, 2015,31(4):105-119.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.005
[28]   Jiang N, Pan X F . The Developments of epigenetics and epigenetics-based modern biomedicine and pharmaceutics. Biotechnology Bulletin, 2015,31(4):105-119.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.005
[29]   Alexanian A R . An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regen Med, 2010,5(6):891-900.
doi: 10.2217/rme.10.67 pmid: 21082889
[30]   Zhang Z, Alexanian A R . Dopaminergic-like cells from epigenetically reprogrammed mesenchymal stem cells. J Tissue Eng Regen Med, 2012,16(11):2708-2714.
doi: 10.1111/j.1582-4934.2012.01591.x pmid: 22681532
[31]   Zhang Z, Alexanian A R . The neural plasticity of early-passage human bone marrow-derived mesenchymal stem cells and their modulation with chromatin-modifying agents. J Tissue Eng Regen Med, 2014,8(5):407-413.
doi: 10.1002/term.1535 pmid: 22674835
[32]   Alexanian A R, Liu Q S, Zhang Z . Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes,SMAD signaling and cyclic adenosine monophosphate levels. Int J Biochem Cell Biol, 2013,45(8):1633-1638.
doi: 10.1016/j.biocel.2013.04.022
[33]   Amirpour N, Razavi S, Esfandiari E , et al. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules. Int J Dev Neurosci, 2017,59(7):21-30.
doi: 10.1016/j.ijdevneu.2017.03.002 pmid: 28285945
[34]   Viczian A S . Advances in retinal stem cell biology. J Ophthalmic Vis Res, 2013,8(2):147-159.
pmid: 23943690
[35]   Lagutin O V, Zhu C C, Kobayashi D , et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev, 2003,17(3):368-379.
doi: 10.1101/gad.1059403 pmid: 12569128
[36]   Xie S, Lu F, Han J , et al. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions. Cell Cycle, 2017,16(9):841-851.
doi: 10.1080/15384101.2017.1304328 pmid: 28296571
[37]   付艳宾, 龙媛, 谢欣 . 全化学诱导体细胞重编程和转分化. 生命科学, 2016,28(8):941-948.
[37]   Fu Y B, Long Y, Xie X . Recent progress in chemical-induced somatic cell reprogramming and trans-differentiation. Chinese Bulletin of Life Sciences, 2016,28(8):941-948.
[38]   Thoma E C, Merkl C, Heckel T , et al. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports, 2014,3(4):539-547.
doi: 10.1007/978-1-4939-7649-2_8 pmid: 25358782
[39]   Cheng L, Hu W, Qiu B , et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res, 2014,24(6):665-679.
doi: 10.1038/cr.2014.32 pmid: 4423089
[40]   Hu W, Qiu B, Guan W , et al. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 2015,17(2):204-212.
doi: 10.1016/j.stem.2015.07.006 pmid: 26253202
[41]   Li X, Zuo X, Jing J , et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell, 2015,17(2):195-203.
doi: 10.1016/j.stem.2015.06.003 pmid: 26253201
[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[3] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[4] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[5] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[6] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[7] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[8] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[9] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[10] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[11] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[12] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[13] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[14] HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems[J]. China Biotechnology, 2021, 41(5): 87-93.
[15] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.