Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 95-101    DOI: 10.13523/j.cb.20180214
Orginal Article     
Advances in the Research of Genetically Engineering Vaccine of Mycoplasmal pneumoniae
Yu TAO1,Gao-jian LI1,Jian-hong SHU1,Yue-hong WU1,Fang YANG2,Yu-long HE1*()
1 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Hangzhou Hong Sheng Biotechnology Limited by Share Ltd, Hangzhou 310018, China
Download: HTML   PDF(440KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Mycoplasmal pneumoniae of swine (MPS) is a chronic respiratory infectious disease caused by Mycoplasma hyopneumonia (Mhp), thus causes huge losses to the pig industry. At present, vaccination is the main means to reduce or prevent the economic losses caused by Mycoplasma pneumoniae. The research progress of gene engineering vaccine of Mycoplasmal pneumoniae of swine in recent years is discussed, mainly includes adhesion factors related vaccines, ribonucleotide reductase related vaccines, DNA vaccines, expression library vaccines and peptide vaccines, etc. Finally, suggestions for the development of genetic engineering vaccines are proposed.



Key wordsMhp      Gene engineering vaccine      Adhesion factors      NrdF      Peptide vaccines     
Received: 28 July 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Yu TAO,Gao-jian LI,Jian-hong SHU,Yue-hong WU,Fang YANG,Yu-long HE. Advances in the Research of Genetically Engineering Vaccine of Mycoplasmal pneumoniae. China Biotechnology, 2018, 38(2): 95-101.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180214     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/95

商品名称 猪肺炎支
原体株系
疫苗类型 生产厂家
喘净威 RM48株 弱毒苗 浙江诗华诺倍威
喘浩佳 168株 弱毒苗 乾元浩
诸欢畅 168株 弱毒苗 福州大北农
菲必舒 / 弱毒苗 吉林和元
支必宁 168株 弱毒苗 南京天邦
支益宁 168株 弱毒苗 贵州福斯特
支宜捷 RM48株 弱毒苗 齐鲁动物
- / 弱毒苗 南农高科技
- / 弱毒苗 山东华宏
- RM48 弱毒苗 山东绿都
- / 弱毒苗 吉林正业
- / 弱毒苗 新疆天康畜牧
瑞倍适(旺) P-5722-3株 灭活苗 哈药集团
科喘宁 J株 灭活苗 武汉科前
肺祥 DJ-166株 灭活苗 中牧实业
优瑞适(舒) / 灭活苗 瑞普
支肺通 / 灭活苗 四川华派
Table 1 The approved and commonly used products of swine Mycoplasma pneumoniae vaccine
[1]   Wang H, Feng Z, Wu Y , et al. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. Res Vet Sci, 2016,105(4):56-61.
doi: 10.1016/j.rvsc.2016.01.015 pmid: 27033909
[2]   曹培丽, 李媛, 陈超 , 等. 猪肺炎支原体P52蛋白的原核表达及抗血清制备. 中国预防兽医学报, 2009,31(7):572-576.
[2]   Cao P L, Li Y, Chen C , et al. Expression of Mycoplasma hyopneumoniae P52 protein and preparation of the rabbit antisera against P52 protein. Chinese Journal of Preventive Veterinary Medicine, 2009,31(7):572-576.
[3]   Garcia-Morante B, Segales J, Fraile L , et al. Potential use of local and systemic humoral immune response parameters to forecast Mycoplasma hyopneumoniae associated lung lesions. PLoS One, 2017,12(4):e0175034.
doi: 10.1371/journal.pone.0175034 pmid: 5381809
[4]   施尧 . 猪支原体肺炎疫苗研究进展. 养猪, 2013,3:93-95.
doi: 10.3969/j.issn.1002-1957.2013.03.044
[4]   Shi Y . Research progress of vaccine of Mycoplasma pneumonia. Swine Production, 2013,3:93-95.
doi: 10.3969/j.issn.1002-1957.2013.03.044
[5]   Fisch A, Marchioro S B, Gomes C K , et al. Commercial bacterins did not induce detectable levels of antibodies in mice against Mycoplasma hyopneumoniae antigens strongly recognized by swine immune system. Trials in Vaccinology, 2016,5:32-37.
doi: 10.1016/j.trivac.2016.01.001
[6]   Zhang Q, Young T F, Ross R F . Identification and characterization of a Mycoplasma hyopneumoniae adhesin. Infect Immun, 1995,63(3):1013-1019.
[7]   刘茂军, 邵国青, 张映 , 等. 猪肺炎支原体P97基因抗原决定簇R1区的克隆与表达. 江苏农业学报, 2005,21(3):207-211.
doi: 10.3969/j.issn.1000-4440.2005.03.013
[7]   Liu M J, Shao G Q, Zhang Y , et al. Cloning and expressing of R1 region of P97 gene in Mycoplasma hyopneumoniae. Jiangsu Journal of Agricultural Sciences, 2005,21(3):207-211.
doi: 10.3969/j.issn.1000-4440.2005.03.013
[8]   Conceicao F R, Moreira A N, Dellagostin O A . A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine, 2006,24(29):5734-5743.
doi: 10.1016/j.vaccine.2006.04.036 pmid: 16730864
[9]   卢会英, 沈青春, 宁宜宝 . 猪肺炎支原体p97 R1区基因和大肠杆菌LTB基因的重组和表达. 中国兽医杂志, 2010,46(4):3-6.
[9]   Lu H Y, Shen Q C, Ning Y B . The recombination and expression of R1 region of Mycoplasma hyopneumoniae p97 adhesin with Escherichia coli heat-labile enterotoxin B subunit. Chinese Journal of Veterinary Medicine, 2010,46(4):3-6.
[10]   Marchioro S B, Fisch A, Gomes C K , et al. Local and systemic immune responses induced by a recombinant chimeric protein containing Mycoplasma hyopneumoniae antigens fused to the B subunit of Escherichia coli heat-labile enterotoxin LTB. Vet Microbiol, 2014,173(1):166-171.
doi: 10.1016/j.vetmic.2014.07.009 pmid: 25091529
[11]   Barate A K, Cho Y, Truong Q L , et al. Immunogenicity of IMS 1113 plus soluble subunit and chimeric proteins containing Mycoplasma hyopneumoniae P97 C-terminal repeat regions. FEMS Microbiol Lett, 2014,352(2):213-220.
doi: 10.1111/1574-6968.12389 pmid: 24461070
[12]   Okamba F R, Arella M, Music N , et al. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine. Vaccine, 2010,28(30):4802-4809.
doi: 10.1016/j.vaccine.2010.04.089 pmid: 20472025
[13]   Tassis P D, Tsakmakidis I, Papatsiros V G , et al. A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia (Mycoplasma hyopneumoniae) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs. BMC Vet Res, 2017,13(1):91.
doi: 10.1186/s12917-017-1014-7
[14]   Jorge S, de Oliveira N R, Marchioro S B , et al. The Mycoplasma hyopneumoniae recombinant heat shock protein P42 induces an immune response in pigs under field conditions. Comp Immunol Microbiol Infect Dis, 2014,37(4):229-236.
doi: 10.1016/j.cimid.2014.07.001 pmid: 25082621
[15]   Lee S H, Lee S, Chae C , et al. A recombinant chimera comprising the R1 and R2 repeat regions of M. hyopneumoniae P97 and the N-terminal region of A. pleuropneumoniae ApxIII elicits immune responses. BMC Vet Res, 2014,10(1):43.
doi: 10.1186/1746-6148-10-43 pmid: 24533486
[16]   Shimoji Y, Oishi E, Muneta Y , et al. Vaccine efficacy of the attenuated Erysipelothrix rhusiopathiae YS-19 expressing a recombinant protein of Mycoplasma hyopneumoniae P97 adhesin against mycoplasmal pneumonia of swine. Vaccine, 2003,21(5):532-537.
doi: 10.1016/S0264-410X(02)00462-0 pmid: 12531653
[17]   Petersen A C, Oneal D C, Seibel J R , et al. Cross reactivity among the swine mycoplasmas as identified by protein microarray. Vet Microbiol, 2016,192(8):204-212.
doi: 10.1016/j.vetmic.2016.07.023 pmid: 27527784
[18]   Jeong J, Park C, Choi K , et al. A new single-dose bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae elicits protective immunity and improves growth performance under field conditions. Vet Microbiol, 2016,182(1):178-186.
doi: 10.1016/j.vetmic.2015.11.023 pmid: 26711046
[19]   de Oliveira N R, Jorge S, Gomes C K , et al. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice. Vet Microbiol, 2017,201(3):146-153.
doi: 10.1016/j.vetmic.2017.01.023 pmid: 28284602
[20]   Galli V, Simionatto S, Marchioro S B , et al. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine, 2012,31(1):135-140.
doi: 10.1016/j.vaccine.2012.10.088 pmid: 23137841
[21]   Zou H Y, Liu X J, Ma F Y , et al. Attenuated Actinobacillus pleuropneumoniae as a bacterial vector for expression of Mycoplasma hyopneumoniae P36 gene. J Gene Med, 2011,13(4):221-229.
doi: 10.1002/jgm.1556 pmid: 21432947
[22]   Burnett T A, Dinkla K, Rohde M , et al. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol Microbiol, 2006,60(3):669-686.
doi: 10.1111/j.1365-2958.2006.05139.x pmid: 16629669
[23]   Fagan P K, Djordjevic S P, Eamens G J , et al. Molecular characterization of a ribonucleotide reductase (nrdF) gene fragment of Mycoplasma hyopneumoniae and assessment of the recombinant product as an experimental vaccine for enzootic pneumonia. Infect Immun, 1996,64(3):1060-1064.
[24]   Fagan P K, Djordjevic S P, Chin J , et al. Oral immunization of mice with attenuated Salmonella typhimurium aroA expressing a recombinant Mycoplasma hyopneumoniae antigen (NrdF). Infect Immun, 1997,65(6):2502-2507.
[25]   Fagan P K, Walker M J, Chin J , et al. Oral immunization of swine with attenuated Salmonella typhimurium aroA SL3261 expressing a recombinant antigen of Mycoplasma hyopneumoniae (NrdF) primes the immune system for a NrdF specific secretory IgA response in the lungs. Microb Pathog, 2001,30(2):101-110.
doi: 10.1006/mpat.2000.0412
[26]   Chen A Y, Fry S R, Forbes-Faulkner J , et al. Comparative immunogenicity of M. hyopneumoniae NrdF encoded in different expression systems delivered orally via attenuated S. typhimurium aroA in mice. Vet Microbiol, 2006,114(3):252-259.
doi: 10.1016/j.vetmic.2005.12.009 pmid: 16426773
[27]   Maes D, Segales J, Meyns T , et al. Control of Mycoplasma hyopneumoniae infections in pigs. Vet Microbiol, 2008,126(4):297-309.
doi: 10.1016/j.vetmic.2007.09.008
[28]   Marchioro S B, Maes D, Flahou B , et al. Local and systemic immune responses in pigs intramuscularly injected with an inactivated Mycoplasma hyopneumoniae vaccine. Vaccine, 2013,31(9):1305-1311.
doi: 10.1016/j.vaccine.2012.12.068 pmid: 23306368
[29]   Simionatto S, Marchioro S B, Maes D , et al. Mycoplasma hyopneumoniae: from disease to vaccine development. Vet Microbiol, 2013,165(3):234-242.
doi: 10.1016/j.vetmic.2013.04.019 pmid: 23680109
[30]   Thacker E L, Thacker B J, Kuhn M , et al. Evaluation of local and systemic immune responses induced by intramuscular injection of a Mycoplasma hyopneumoniae bacterin to pigs. Am J Vet Res, 2000,61(11):1384-1389.
doi: 10.1128/CVI.05100-11 pmid: 11108184
[31]   Babiuk L A . Vaccination: a management tool in veterinary medicine. Vet J, 2002,164(3):188-201.
doi: 10.1053/tvjl.2001.0663
[32]   Chen Y L, Wang S N, Yang W J , et al. Expression and immunogenicity of Mycoplasma hyopneumoniae heat shock protein antigen P42 by DNA vaccination. Infect Immun, 2003,71(3):1155-1160.
doi: 10.1128/IAI.71.3.1155-1160.2003 pmid: 12595427
[33]   Chen A Y, Fry S R, Daggard G E , et al. Evaluation of immune response to recombinant potential protective antigens of Mycoplasma hyopneumoniae delivered as cocktail DNA and/or recombinant protein vaccines in mice. Vaccine, 2008,26(34):4372-4378.
doi: 10.1016/j.vaccine.2008.06.005 pmid: 18602730
[34]   Virginio V G, Gonchoroski T, Paes J A , et al. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine, 2014,32(44):5832-5838.
doi: 10.1016/j.vaccine.2014.08.008 pmid: 25148775
[35]   Talaat A M, Stemke-Hale K . Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect Immun, 2005,73(11):7089-7098.
doi: 10.1128/IAI.73.11.7089-7098.2005 pmid: 16239502
[36]   Moore R J, Lenghaus C, Sheedy S A , et al. Improved vectors for expression library immunization--application to Mycoplasma hyopneumoniae infection in pigs. Vaccine, 2001,20(1):115-120.
doi: 10.1016/S0264-410X(01)00314-0 pmid: 11567754
[37]   Razin S, Yogev D, Naot Y . Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev, 1998,62(4):1094-1156.
[38]   King K W, Faulds D H, Rosey E L , et al. Characterization of the gene encoding Mhp1 from Mycoplasma hyopneumoniae and examination of Mhp1’s vaccine potential. Vaccine, 1997,15(1):25-35.
doi: 10.1016/S0264-410X(96)00121-1 pmid: 9041663
[39]   Yang W J, Lai J F, Peng K C , et al. Epitope mapping of Mycoplasma hyopneumoniae using phage displayed peptide libraries and the immune responses of the selected phagotopes. J Immunol Methods, 2005,304(1):15-29.
doi: 10.1016/j.jim.2005.05.009 pmid: 1605464228
[40]   Ishag H Z, Wu Y Z, Liu M J , et al. In vitro protective efficacy of lithium chloride against Mycoplasma hyopneumoniae infection. Res Vet Sci, 2016,106(6):93-96.
doi: 10.1016/j.rvsc.2016.03.013 pmid: 27234543
[41]   Virginio V G, Bandeira N C, Leal F M , et al. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines. Heliyon, 2017,3(1):e00225.
doi: 10.1016/j.heliyon.2016.e00225 pmid: 5291748
[42]   Michiels A, Vranckx K, Piepers S , et al. Impact of diversity of Mycoplasma hyopneumoniae strains on lung lesions in slaughter pigs. Vet Res, 2017,48(1):2-14.
doi: 10.1186/s13567-016-0408-z pmid: 28095890
[43]   Chae C . Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J, 2016,212(2):1-6.
doi: 10.1016/j.tvjl.2015.10.030 pmid: 27256017
No related articles found!