Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 100-107    DOI: 10.13523/j.cb.20180112
Orginal Article     
Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize
Shuang-shuang LIU1,2,3,**,Suo-wei WU1,2,3,**,Li-qun RAO1,Xiang-yuan WAN1,2,3()
1 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
2 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100024, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
Download: HTML   PDF(404KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Maize (Zea mays L.) genic male-sterile mutant has been widely studied for its biological significance on pollen developmental study and commercial value in hybrid vigor utilization. As the development of molecular biotechnology, several genic male-sterile genes has been cloned and characterized in maize, leading to potential use of genetic engineering male-sterility in commercial hybrid seed production. Here, the progress of cytological characterization, gene cloning and molecular mechanism of genic male-sterility study in maize are reviewe, and potential application approaches of genic male-sterile genes in maize hybrid production is discussed.



Key wordsZea mays      Genic male sterility      Gene cloning      Molecular mechanism      Hybrid vigor utilization     
Received: 01 December 2017      Published: 31 January 2018
ZTFLH:  Q785  
Corresponding Authors: Shuang-shuang LIU,Suo-wei WU     E-mail: wanxiangyuan@ustb.edu.cn
Cite this article:

Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize. China Biotechnology, 2018, 38(1): 100-107.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180112     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/100

No.MutantsChr. sitesReferencesNo.MutantsChr. sitesReferences
1ms16L[5,6,7]22ms261S[24,25]
2ms29L[5,7]23ms281S[26]
3ms33L[8]24ms2910S[27]
4ms55L[5]25ms304L[28,29]
5ms77L[5,9,10,11]26ms312L[28]
6ms88L[5,12,13,14]27ms322L[30]
7ms91S [5,9,15]28ms332L[31,32]
8ms10/apv110L[4,5,9]29ms347L[33]
9ms1110L[5,9,16]30ms369L[34]
10ms121L[5,9]31ms373L[35]
11ms135S[5,9,15] 32ms382L[36]
12ms141S[5,9,17] 33Ms414L[37]
13ms171S[5] 34Ms425S[38]
14ms181[18]35ms438[26]
15ms199[18]36Ms444L[37,39]
16ms20ND[18]37ms459L[40]
17ms216[19] 38ms4710S[41]
18ms22/msca17S[20,21] 39ms489L[42]
19ms238S[22] 40ms4910[43]
20ms2410S[23] 41ms506L[44]
21ms259[24] 42ms5210[45]
 
GroupPhenotypeMutants
1. 花药特性缺陷型(1)小花中的花药缺失ms-si*355ems71990
(2)花粉囊细胞未分化msca1-ems63131msca1-ms6064
2. 花药结构缺陷型二室花药vlo-ems71924vlo-ems72032
3. 花药壁层数缺陷型(1)细胞层未分化ems63089mtm00-06, tcl1ems72063
(2)下表皮细胞超分化ocl4-mtm99-66
(3)中间层细胞超分化ems72091
(4)绒毡层细胞超分化ms*6015ms32ms32-ms6066ms23ems72063
(5)多核绒毡层细胞ems63265ems71777RescueMu-E03-23
4. 细胞壁成熟前降解型4.1 花药形态改变
(1)性母细胞与绒毡层降解ms8ms8-mtm99-56RescueMu-A60-22bems71884ems64486
(2)绒毡层液泡化降解ems71787RescueMu-P19-47
(3)绒毡层细胞皱缩降解ems71986RescueMu-C17-32RescueMu-A60-35A
4.2 功能缺陷
(1)胼胝质不沉积ms10
(2)胼胝质累积ms45-msN2499ms45-ems64409csmd1ms8ms8-mtm99-56
Table 2 Classification of genetic male-sterile mutants in maize
No.Gene nameGene modelCoded proteinsReferences
1ms1, male sterility1*GRMZM2G180319LOB/LBD protein 30[6]
2ms7, male sterility7*GRMZM5G890224PHD-finger protein[11]
3ms8, male sterility8GRMZM2G119265Beta-1,3-galactosyltransferase[14]
4ms9, male sterility9GRMZM2G308204MYB transcription factor[15]
5ms22/msca1, male sterile converted anther1GRMZM2G442791Glutaredoxin[21]
6ms23, male sterility23GRMZM2G021276bHLH transcription factor[22]
7ms26, male sterlity26ZEMMB73_004940Cytochrome P450 monooxygenase,CYP704B1[24]
8ms30, male sterility30*GRMZM2G174782GDSL esterase/lipase protein[29]
9ms32, male sterility32GRMZM2G163233bHLH transcription factor[30]
10ms33, male sterility33*GRMZM2G070304GPAT protein[32]
11Ms44, male sterility44AC225727.3_FGT003Type C non-specific lipid transfer protein[39]
12ms45, male sterility45GRMZM2G139372Strictosidin synthase[40]
13Ocl4, outer cell layer4GRMZM2G123140HD-ZIP transcription factor[46]
14mac1, multiple archesporial cells1GRMZM2G027522Small secreted protein legend[47]
15ipe1, irregular pollen exine1GRMZM2G434500GMC oxidoreductase[3]
16apv1, abnormal pollen vacuolation1GRMZM5G830329Cytochrome P450 monooxygenase,CYP703A2[4]
Table 3 The genic male sterility genes that has been cloned in maize
[1]   Timofejeva L, Skibbe D S, Lee S, et al.Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3 (Bethesda), 2013, 3(2): 231-249.
doi: 10.1534/g3.112.004465 pmid: 3564984
[2]   Skibbe D S, Schnable P S.Male sterility in maize. Maydica, 2005, 50: 367-376.
[3]   Chen X, Zhang H, Sun H, et al.IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173(1): 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856
[4]   Somaratne Y, Tian Y, Zhang H, et al.ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90(1): 96-110.
doi: 10.1111/tpj.13476 pmid: 28078801
[5]   Albertsen M C, Phillips R L.Developmental cytology of 13 genetic male sterile loci in maize. Can J Genet Cytol, 1981, 23: 195-208.
doi: 10.1139/g81-023
[6]   万向元,吴锁伟,周岩,等. 植物花粉发育调控基因Ms1及其编码蛋白: 中国, ZL201410381072.5. 2017-06-16.[2017-08-19]..
[6]   Wan X Y, Wu S W, Zhou Y, et al.The DNA Sequence and the Coded protein of Ms1 Gene Which Controls the Male Fertility of Plants. Chinese, ZL201410381072.5. 2017-06-16.[2017-08-19]..
[7]   Eyster L A.Heritable characters of maize. VII. Male sterile. Journal of Heredity, 1921, 12(3): 138-141.
doi: 10.1093/jhered/12.3.138
[8]   Eyster W H.Heritable characters of maize XXXIX- Male sterile 3. Journal of Heredity, 1931, 22(4): 117-119.
doi: 10.1093/oxfordjournals.jhered.a103454
[9]   Beadle G W.Genes in maize for pollen sterility. Genetics, 1932, 17: 413-431.
doi: 10.1007/BF02984694 pmid: 17246660
[10]   Morton C M, Lawson D L, Bedinger P.Morphological study of the maize male sterile mutant ms7. Maydica, 1989, 34: 239-245.
[11]   Zhang D, Wu S, An X, et al.Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J.[2017-02-01]. https://doi.org/10.1111/pbi.12786.
doi: 10.1111/pbi.12786 pmid: 28678349
[12]   Wang D, Adams C M, Fernandes J F, et al.A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J, 2012, 10(8): 925-935.
doi: 10.1111/j.1467-7652.2012.00721.x pmid: 22748129
[13]   Wang D, Oses-Prieto J A, Li K H, et al. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant J, 2010, 63(6): 939-951.
doi: 10.1111/j.1365-313X.2010.04294.x pmid: 20626649
[14]   Wang D, Skibbe DS and Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod, 2013, 26(4): 329-338.
doi: 10.1007/s00497-013-0230-y pmid: 23887707
[15]   Albertsen M, Fox T, Leonard A, et al.Cloning and Use of the ms9 Gene From Maize: US, US20160024520A1. 2016-01-28.[2017-08-19]..
[16]   Kelliher T, Egger R L, Zhang H, et al.Unresolved issues in pre-meiotic anther development. Front Plant Sci, 2014, 5: 347.
doi: 10.3389/fpls.2014.00347 pmid: 4104404
[17]   余自青,吴锁伟,张丹凤,等. 玉米隐性核不育突变体ms14的遗传分析与基因定位. 中国生物工程杂志,2016, 36(10): 8-14.
doi: 10.13523/j.cb.20161002
[17]   Yu Z Q, Wu S W, Zhang D F, et al.Genetic analysis and gene mapping of recessive genic male sterility14 (ms14) mutant in maize. China Biotechnology, 2016, 36(10): 8-14.
doi: 10.13523/j.cb.20161002
[18]   Eyster W H.Genetics of Zea mays. Bibliographia Genetica, 1934, 11: 187-192.
[19]   Schwartz D.The interaction of nuclear and cytoplasmic factors in the inheritance of male sterility in maize. Genetics, 1951, 36(6): 676-696.
doi: 10.1016/j.tele.2007.01.004 pmid: 17247371
[20]   Albertsen M C, Fox T, Trimnell M, et al.Msca1 Nucleotide Sequences Impacting Plant Male Fertility and Method of Using Same: US, US20090038027A1. 2009-02-05.[2017-08-19]. .
[21]   Chaubal R, Anderson J R, Trimnell M R, et al.The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5): 778-788.
doi: 10.1007/s00425-002-0929-8 pmid: 12624765
[22]   Nan G L, Zhai J, Arikit S, et al.MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1): 163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[23]   Fox T, Trimnell M R and Albertsen M C. Male-sterile mutant ms24 mapped to chormosome 10. Maize Genet Coop Newsletter, 2002, 76: 37.
[24]   Djukanovic V, Smith J, Lowe K, et al.Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76(5): 888-899.
doi: 10.1111/tpj.12335 pmid: 24112765
[25]   Loukides C A, Broadwater A H, Bedinger P A.Two new male-sterile mutants of Zea mays (Poaceae) with abnormal tapetal cell morphology. American Journal of Botany, 1995, 87(8): 1017-1023.
doi: 10.2307/2446231
[26]   Golubovskaya I N.Mapping of two mei-genes of maize wtih the help of B-A translocations. Soviet Genetics, 1987, 23: 473-480.
[27]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 10S male-sterile mutant: ms29. Maize Genet Coop Newsletter, 1998, 72: 37.
[28]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 2L male-sterile mutants: ms30 and ms31. Maize Genet Coop Newsletter, 1998, 72: 38.
[29]   万向元,吴锁伟,周岩,等.一种玉米花粉减数分裂后发育调控基因Ms30 的DNA 序列及其编码蛋白,中国,ZL201410703778.9.2017-04-12.[2017-08-19]. .
[29]   Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of a Pollen Post-meiotic Developmental Gene Ms30 in Maize: China,ZL201410703778.9.2017-04-12.[2017-08-19]. .
[30]   Moon J, Skibbe D, Timofejeva L, et al.Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76(4): 592-602.
doi: 10.1111/tpj.12318 pmid: 24033746
[31]   Trimnell M R, Patterson E, Fox T W, et al.New chromosome 2L male-sterile mutant: ms33 and alleles. Maize Genet Coop Newsletter, 1999, 73: 48.
[32]   万向元,吴锁伟,张丹凤,等.玉米花粉发育调控基因Ms33 的DNA 序列及其编码蛋白:中国,CN201610880590.0.2017-02-15.[2017-08-19]..
[32]   Wan X Y, Wu S W, Zhang D F, et al.The DNA Sequence and the Coded protein of a Pollen Developmental Gene Ms33 in Maize. China, CN201610880590.0.2017-02-15.[2017-08-19]..
[33]   Trimnell M R, Patterson E, Fox T W, et al.New chromosome 7L male-sterile mutant: ms34. Maize Genet Coop Newsletter, 1999, 73: 49.
[34]   Trimnell M R, Patterson E, Fox T W, et al.New chromosome 9L male-sterile mutants: ms35 and ms36. Maize Genet Coop Newsletter, 1999, 73: 49.
[35]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 7L male-sterile mutant: ms37. Maize Genet Coop Newsletter, 1999, 73: 48.
[36]   Albertsen M C, Fox T W, Trimnell M R.Changing a duplicated designation for two different male-sterile mutations. Maize Genet Coop Newsletter, 1999, 73: 48.
[37]   Albertsen M C, Sellner L M.An independent, EMS-induced dominant male sterile that maps similar to Ms41. Maize Genet Coop Newsletter, 1988, 62: 70.
[38]   Albertsen M C, Fox T W, Trimnell M R, et al.Interval mapping a new dominant male-sterile mutant, Ms42. Maize Genet Coop Newsletter, 1993, 67: 64.
[39]   Fox T, DeBruin J, Haug Collet K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15(8): 942-952.
doi: 10.1111/pbi.12689 pmid: 28055137
[40]   Cigan A M, Unger E, Xu R J, et al., Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14(3): 135-142.
doi: 10.1007/s004970100099
[41]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 10 male-sterile mutant: ms47. Maize Genet Coop Newsletter, 2002, 76: 38.
[42]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 9L male-sterile mutant: ms48. Maize Genet Coop Newsletter, 2002, 76: 38.
[43]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 10 male-sterile mutant: ms49. Maize Genet Coop Newsletter, 2002, 76: 38-39.
[44]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 6L male-sterile mutant: ms50. Maize Genet Coop Newsletter, 2002, 76: 39.
[45]   Trimnell M R, Fox T W, Albertsen M C.New chromosome 4 male-sterile mutant: ms52. Maize Genet Coop Newsletter, 2004, 78: 27.
[46]   Vernoud V, Laigle G, Rozier F, et al.The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59(6): 883-894.
doi: 10.1111/j.1365-313X.2009.03916.x pmid: 19453441
[47]   Wang C J, Nan G L, Kelliher T, et al.Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14): 2594-2603.
doi: 10.1242/dev.077891 pmid: 22696296
[48]   Wang D, Skibbe D S,Walbot V.Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sex Plant Reprod, 2011, 24(4): 297-306.
doi: 10.1007/s00497-011-0167-y pmid: 21475967
[49]   李竞雄,周洪生,孙荣锦. 玉米雄性不育生物学. 北京:中国农业出版社, 1998: 67-154.
[49]   Li J, Zhou H, Sun R.Biology of Male Sterility in Maize. Beijing: China Agriculture Press, 1998: 67-154.
[50]   Cigan A M, Albertsen M C.Reversible Nuclear Genetic System for Male Sterility in Transgenic Plants, US: US6281348B1,2001-08-28.[2017-08-19].
[51]   Albertsen M C, Beach LR, Howard J, et al.Nucleotide Sequences Mediated male Fertility and Method of Using Same, United States: US005478369A. 1995-12-26.[2017-08-19]..
[52]   Wu Y, Fox T W, Trimnell M R, et al.Development of a Novel Recessive Genetic Male Sterility System for Hybrid Seed Production in Maize and Other Cross-pollinating Crops. Plant Biotechnol J, 2016, 14(3): 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[53]   Cigan A M, Singh M, Benn G, et al.Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol J, 2017, 15(3): 379-389.
doi: 10.1111/pbi.12633 pmid: 5316918
[54]   Svitashev S, Schwartz C, Lenderts B, et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274.
doi: 10.1038/ncomms13274 pmid: 27848933
[55]   Gomez J F, Talle B, Wilson Z A.Anther and pollen development: A conserved developmental pathway. J Integr Plant Biol, 2015, 57(11): 876-891.
doi: 10.1111/jipb.12425 pmid: 4794635
[56]   Fernández Gómez J, Wilson Z A.A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 2014, 12(6): 765-777.
doi: 10.1111/pbi.12181 pmid: 24684666
[1] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[2] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[3] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.
[4] HE Shi-bao, YANG Cheng-fei, SHANG Sha, WANG Ling-yan, TANG Wen-chao, ZHU Yong. Cloning and Expression Analysis of Juvenile Hormone Binding Protein Gene Bmtol in Silkworm,Bombyx mori[J]. China Biotechnology, 2017, 37(10): 16-25.
[5] ZHANG Min, TIAN Yin-shuai, HU Xiao-le, XU Ying, CHEN Fang. Cloning and Expression Analysis of JcAGG3, G-protein Gamma Subunitsthree Gene from Jatrophacurcas L.[J]. China Biotechnology, 2016, 36(5): 46-52.
[6] LI Da, DAI Peng, WANG Wei, ZHANG Wen-tao, WANG Qin, SHU Yi, ZHU Chun-lai, JI Qi-feng, LIANG Ping, YAN Zhen. Cloning and Expression of PLCE1 Gene and Its Haplotypes of rs2274223 and rs3765524[J]. China Biotechnology, 2016, 36(12): 1-7.
[7] YU Zi-qing, WU Suo-wei, ZHANG Dan-feng, LIU Shuang-shuang, XIE Ke, RAO Li-qun, WAN Xiang-yuan. Genetic Analysis and Gene Mapping of Recessive Genic Male Sterility14 (ms14) Mutant in Maize[J]. China Biotechnology, 2016, 36(10): 8-14.
[8] YIN Shou-liang, ZHANG Yu-xiu, ZHANG Qi, DOU Meng-nan, YANG Ke-qian. The Effect of Inorganic Phosphate on the Biosynthesis of Secondary Metabolites in Streptomyces[J]. China Biotechnology, 2015, 35(9): 105-113.
[9] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[10] FAN Fei-fei, LI Jie-qin, ZHAN Qiu-wen, WANG Li-hua, LIU Yan-long. Research Progress of Cinnamoyl-CoA Reductase (CCR) Gene in Plants[J]. China Biotechnology, 2015, 35(12): 96-102.
[11] WANG Shi-qi, LIU Jing-ying, LIU Cheng-lang, LI Chun, HU Xiao-feng, XIA Li-qiu, ZHANG You-ming. Construction and Expression of Prokaryotic Expression Vector of Soluble TNF-related Apoptosis Inducing Ligand and Its Anti-tumor Activity[J]. China Biotechnology, 2015, 35(12): 1-7.
[12] ZHU Bei-lin, ZHOU Jie, WANG Zheng-hua, ZHAO Yun, HUANG Jing, WU Zi-rong. Cloning and Characterization of Bacillus Licheniformis Glutamyl Endopeptidase[J]. China Biotechnology, 2013, 33(3): 105-110.
[13] WANG Chao, AN Xue-li, ZHANG Zeng-wei, YANG Qing, RAO Li-qun, CHEN Xin-bo, FANG Cai-chen, WAN Xiang-yuan. Research Progress and Prospect of Breeding Technological System Based on Recessive Genic Male-sterile Genes in Plants[J]. China Biotechnology, 2013, 33(10): 124-130.
[14] FENG Yuan-hang, WANG Gang, JI Jing, GUAN Chun-feng, JIN Chao. Cloning and Expression Analysis of LmP5CS Gene from Lycium chinense Miller[J]. China Biotechnology, 2013, 33(1): 33-40.
[15] MAO Shao-ming, ZHANG Huai-yun. The Advance of Research on the Butanol Tolerance of Clostridium acetobutylicum[J]. China Biotechnology, 2012, 32(09): 118-124.