Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 88-99    DOI: 10.13523/j.cb.20180111
Orginal Article     
Cytobiology and Molecular Genetics Research Methods on Maize Anther Development
You-hui TIAN1,2,Xiang-yuan WAN1,2()
1 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering,University of Science and Technology Beijing, Beijing 100024, China
2 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
Download: HTML   PDF(1262KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Male sterile materials play important roles both in maize heterosis utilization and hybrids production, which are based on cytobiology and molecular genetics research on maize anther development.Anther development of maize is sophisticated, which need cooperative regulation of sporophyte and gametophyte. Here, the research progresses in maize anther morphology, maize anther development division, male sterility classification, cytobiology research methods, various omics research methods and molecular genetics methods on anther development are summarized, which will provide methodological clues for understanding the mechanism underlying maize anther development and industrialized utilization of male sterile materials.



Key wordsMaize      Anther      Male sterility      Heterosis utilization     
Received: 01 December 2017      Published: 31 January 2018
ZTFLH:  Q785  
Cite this article:

You-hui TIAN,Xiang-yuan WAN. Cytobiology and Molecular Genetics Research Methods on Maize Anther Development. China Biotechnology, 2018, 38(1): 88-99.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180111     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/88

Fig.1 Morphology of maize tassel and spikelet(a) Maize plant at anthesis (b) Tassel of maize (c) Spikelet of maize
Fig.2 Morphology of maize anther(a) Maize anther (b) Transverse section of maize anther (c) Anther locule (d) Stripped anther (e) Maize pollen granule (f) The outer surface of maize anther (g) The inner surface of maize anther E: Epidermis; En: Endothecium; ML: Middle layer; MMC: Microspore mother cell; T: Tapetum. Bars = 1mm in (a), 30μm in (b,c), 500μm in (d), 20μm (e) and 10μm in (f,g)
Fig.3 Diagram of cell lineages during early anther developmentACD: Asymmetric cell division; Ar: Archesporial cell; C: Connective tissue; E: Epidermis; En: Endothecium; L2-d: L2-derived cell; ML: Middle layer; PPC: Primary parietal cell; SCD: Symmetric cell division; Sp: Sporogenous cell; SPC: Secondary parietal cell; T: Tapetum
Fig.4 Cytological observation maize anther development at 14 stagesL1, L2, and L3: The three cell layers in stamen primordia; Ar: Archesporial cell; BP: Bicellular pollen; Dy: Dyad cell; E: Epidermis; En: Endothecium; MC: Meiotic cell; ML: Middle layer; MMC: Microspore mother cell; MP: Mature pollen; Msp: Microspore parietal cell; V: Vascular bundle; PPL: Primary parietal layer; SPL: Secondary parietal cell layer; Sp: Sporogenous cell; T: Tapetum; Tds: Tetrads; Bars=50μm
时期形态特征花药长度(μm)表达基因
1花药原基起始,由L1、L2、L3三层细胞构成30~120
2L2层细胞分化形成AR细胞120~180MSCA1[26]
3AR细胞分裂形成PPL180~280
4细胞分裂继续进行,形成EN和SPC,垂周分裂使花药小室增大280~500MAC1[4]
5SPL分裂,形成ML和T500~700
6花药小室增大,AR发育成熟形成MMC1 000~1 200
7MC与绒毡层接触,周围胼胝质降解ML变薄1 200~1 500
8a减数第一次分裂完成,形成二分体;绒毡层染色质浓缩1 500~2 000MS9[27]MS23[28]MS32[29]
8b减数第二次分裂结束,形成由胼胝质包裹的四分体2 000~2 500MS8[30]
9胼胝质降解,小孢子释放2 500~3 000MS26[31]MS45[32]APV1[25]IPE1[24]
10小孢子内部形成中央大液泡,与绒毡层接触,绒毡层进一步降解3 000~3 500
11小孢子内液泡收缩,细胞核经过一次有丝分裂形成营养核和生殖核3 500~5 000
12生殖核在经过一次有丝分裂,形成三核花粉粒;绒毡层彻底降解5 000~5 500
13花粉粒继续进行淀粉积累,呈圆球状5 500~6 000
14花药开裂,散粉5 500~6 000
Table 1 Major cytological events of maize anther development
[1]   Bhatt A M, Canales C, Dickinson H G.Plant meiosis: the means to 1N. Trends in Plant Science, 2001, 6(3): 114-121.
doi: 10.1016/S1360-1385(00)01861-6 pmid: 11239610
[2]   Ma H.Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology, 2005, 56(1): 393-434.
doi: 10.1146/annurev.arplant.55.031903.141717
[3]   Ma J, David S S, John F, et al.Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biology, 2008, 9(12): R181.
doi: 10.1186/gb-2008-9-12-r181 pmid: 19099579
[4]   Wang C J, Nan G L, Kelliher T., et al.Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14): 2594-2603.
doi: 10.1242/dev.077891 pmid: 22696296
[5]   Kelliher T, Walbot V.Emergence and patterning of the five cell types of the Zea mays anther locule. Developmental Biology, 2011, 350(1): 32-49.
doi: 10.1016/j.ydbio.2010.11.005 pmid: 3024885
[6]   Goldberg R B, Beals T P, Sanders P M.Anther development: basic principles and practical applications. Plant Cell, 1993, 243(5): 1217-1229.
doi: 10.1105/tpc.5.10.1217 pmid: 8281038
[7]   McCormick S. Male gametophyte development. Plant Cell, 1993, 5(10): 1265-1275.
doi: 10.1105/tpc.5.10.1265
[8]   Scott R J, Spielman M, Dickinson H G.Stamen structure and function. Plant Cell, 2004, 16(suppl1): S46-60.
doi: 10.1105/tpc.017012
[9]   吴锁伟,方才臣,邓联武,等. 玉米隐性核雄性不育基因研究进展及其育种应用途径分析. 分子植物育种,2012, 10(1): 1001-1011.
doi: 10.5376/mpb.cn.2012.10.0001
[9]   Wu S W, Fang C C, Deng L W, et al.Research progress on maize recessive genic male sterility gene and its utilization strategies in maize breeding program. Molecular Plant Breeding, 2012, 10(1): 1001-1011.
doi: 10.5376/mpb.cn.2012.10.0001
[10]   Kelliher T, Egger R L, Zhang H, et al.Unresolved issues in pre-meiotic anther development. Frontiers in Plant Science, 2014, 5(347): 1-9.
doi: 10.3389/fpls.2014.00347 pmid: 4104404
[11]   Irish V F.Petal and stamen development. Current Topics in Developmental Biology, 1999, 41(1): 133-161.
[12]   Cacharrn J, Saedler H F, Theissen G.Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Development Genes and Evolution, 1999, 209(0949-944X): 411-420.
doi: 10.1007/s004270050271 pmid: 10370124
[13]   Patrick S, Georg F, Antony B, et al.Perception of free cutin monomers by plant cells. Plant Journal,1996, 10(2): 331-341.
doi: 10.1046/j.1365-313X.1996.10020331.x
[14]   Fauth M, Schweizer P, Buchala A, et al.Cutin monomers and surface wax constituents elicit H2O2 in conditioned cucumber hypocotyl segments and enhance the activity of other H2O2 elicitors. Plant Physiology, 1998, 117(4): 1373-1380.
doi: 10.1104/pp.117.4.1373
[15]   Zhu Q H, Ramm K, Shivakkumar R, et al.The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology, 2004, 135(2): 1514-1525.
doi: 10.1104/pp.104.041459 pmid: 15247409
[16]   Sheridan W F, Golubeva E A, Abrhamova L I, et al.The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics, 1999, 153(2): 933-941.
doi: 10.1016/j.bpj.2015.08.011 pmid: 10511568
[17]   Yang S L, Jiang L, Puah C S, et al.Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with excess microsporocytes1/extra sporogenous cells. Plant Physiology, 2005, 139(1): 186-191.
doi: 10.1104/pp.105.063529
[18]   Mizuno S, Osakabe Y, Maruyama K, et al.Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal, 2007, 50(5): 751-766.
doi: 10.1111/j.1365-313X.2007.03083.x pmid: 17419837
[19]   Skibbe D S, Wang X J, Borsuk L A, et al.Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death. Journal of Genetics and Genomics, 2008, 35(10): 603-616.
doi: 10.1016/S1673-8527(08)60081-8 pmid: 18937917
[20]   Wang D, Oses-Prieto J A, Li K H, et al. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant Journal, 2010, 63(6): 939-951.
doi: 10.1111/j.1365-313X.2010.04294.x pmid: 20626649
[21]   Warmke H E, Lee S J.Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. Journal of Heredity, 1977, 68(4): 213-222.
doi: 10.1093/oxfordjournals.jhered.a108817
[22]   Zhang D, Wilson Z A.Stamen specification and anther development in rice. Chinese Science Bulletin,2009, 54(14): 2342-2353.
doi: 10.1007/s11434-009-0348-3
[23]   Zhang D, Luo X, Zhu L.Cytological analysis and genetic control of rice anther development. Journal of Genetics and Genomics, 2011, 38(9): 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[24]   Chen X Y, Zhang H, Sun H Y, et al.IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiology, 2016, 173(1): 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856
[25]   Somaratne Y, Tian Y, Zhang H, et al.ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant Journal, 2017, 90(1): 96-110.
doi: 10.1111/tpj.13476 pmid: 28078801
[26]   Chaubal R, Anderson J R, Trimnell M R, et al.The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5): 778-788.
doi: 10.1007/s00425-002-0929-8 pmid: 12624765
[27]   Albertsen M, Fox T, Leonard A, et al.Cloning and Use of the ms9 gene from Maize: US, US20160024520A1. 2016-01-08.[2017-08-19]. Cloning and Use of the ms9 gene from Maize: US, US20160024520A1. 2016-01-08.[2017-08-19]. .
[28]   Nan G L, Zhai J, Arikit S, et al.MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1): 163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[29]   Moon J, Skibbe D, Timofejeva L, et al.Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant Journal, 2013, 76(4), 592-602.
doi: 10.1111/tpj.12318 pmid: 24033746
[30]   Wang D, Skibbe D S, Walbot V.Maize Male sterile 8(Ms8), a putative-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reproduction, 2013, 26(4): 329-338.
doi: 10.1007/s00497-013-0230-y pmid: 23887707
[31]   Albertsen M C, Fox T, Huffman G, et al.Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US2012/0005792 A1. 2012-01-05. [2017-08-19].[2017-08-19]..
[32]   Albertsen M C, Beach L R, Howard J, et al.Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US005478369A.1995-01-13.[2017-08-19].Nucleotide Sequences Mediated Male Fertility and Method of Using Same: United States, US005478369A.1995-01-13.[2017-08-19]..
[33]   Bedinger P A, Fowler J E.The Maize Male Gametophyte//Bennetzen J L, Hake. Handbook of Maize: Its Biology. New York:Springer Science and Business Media,2009: 58-78.
[34]   Zhang D B, Yang L.Specification of tapetum and microsporocyte cells within the anther. Current Opinion in Plant Biology, 2014, 17(1): 49-55.
doi: 10.1016/j.pbi.2013.11.001 pmid: 24507494
[35]   Kiesselbach T A.The Structure and Reproduction of Corn. New York:Cold Spring Harbor Laboratory Press,1999: 43-46.
[36]   Sheridan W F, Golubeva E A, Abrhamova L I, et al.The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics, 1999, 153(2): 933-941.
doi: 10.1016/j.bpj.2015.08.011 pmid: 10511568
[37]   Timofejeva L, Skibbe D S, Lee S, et al.Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3, 2013, 3(2): 231-249.
doi: 10.1534/g3.112.004465 pmid: 3564984
[38]   Barbara A A, David R L, Pietro C, et al.Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell, 2000, 5(3): 569-579.
doi: 10.1016/S1097-2765(00)80450-5 pmid: 10882141
[39]   Bartlett M E, Williams S K, Taylor Z, et al.The maize PI/GLO ortholog Zmm16/sterile tassel silky ear1 interacts with the zygomorphy and sex determination pathways in flower development.Plant Cell, 2015, 27(11): 3081-3098.
doi: 10.1105/tpc.15.00679
[40]   Raj C, Carla Z, Mary R T, et al.Two male-sterile mutants of Zea mays with an extra cell division in anther wall. American Journal of Botany,2000, 87(8): 1193-1201.
doi: 10.2307/2656657 pmid: 10948005
[41]   Kunst L, Samuels A L.Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research, 2003, 42(1): 51-80.
doi: 10.1021/ac800514m pmid: 12467640
[42]   Yeats T H, Rose J K.The formation and function of plant cuticles. Plant Physiology, 2013, 163(1): 5-20.
doi: 10.1104/pp.113.222737 pmid: 23893170
[43]   Kim S S, Douglas C J.Sporopollenin monomer biosynthesis in arabidopsis. Journal of Plant Biology, 2013, 56(1): 1-6.
doi: 10.1007/s12374-012-0385-3
[44]   Li H, Pinot F, Sauveplane V, et al.Cytochrome P450 family member CYP704B2 catalyzes the -hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22(1): 173-190.
doi: 10.1105/tpc.109.070326
[45]   Shi J, Tan H, Yu X H,et al.Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell, 2011, 23(6): 2225-2246.
doi: 10.1105/tpc.111.087528 pmid: 21705642
[46]   Ma J, Morrow D J, Fernandes J, et al.Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biology, 2006, 7(3): R22-R22.
doi: 10.1186/gb-2006-7-3-r22 pmid: 16542496
[47]   Wijeratne A J.Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant Journal , 2007, 52(1): 14-29.
doi: 10.1111/j.1365-313X.2007.03217.x pmid: 17666023
[48]   Skibbe D S, Fernandes J F, Medzihradszky K F, et al.Mutator transposon activity reprograms the transcriptomes and proteomes of developing maize anthers. Plant Journal, 2009, 59(4): 622-633.
doi: 10.1111/j.1365-313X.2009.03901.x pmid: 19453454
[49]   Ma J, Duncan D, Morrow D J, et al.Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types.Plant Journal, 2007, 50(4): 637-648.
doi: 10.1111/j.1365-313X.2007.03074.x pmid: 17419846
[50]   Zhang H, Egger R L, Kelliher T, et al.Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3, 2014, 4(6): 993-1010.
doi: 10.1534/g3.113.009738 pmid: 24939185
[51]   Goodacre R .Metabolic profiling: pathways in discovery. Drug Discovery Today, 2004, 9(6): 260-261.
doi: 10.1016/S1359-6446(04)03027-2 pmid: 15003243
[52]   D’Auria JC, Gershenzon J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology, 2005, 8(3): 308-316.
doi: 10.1016/j.pbi.2005.03.012
[53]   Pichersky E, Gang DR.Genetics and biochemistry of secondary metabolites: an evolutionary perspective. Trends in Plant Science, 2000, 5(10): 439-445.
doi: 10.1016/S1360-1385(00)01741-6 pmid: 11044721
[54]   Bernard A, Joubes J.Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research,2013, 52(1): 110-129.
doi: 10.1016/j.plipres.2012.10.002 pmid: 23103356
[55]   Heredia A.Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim Biophys Acta,2003, 1620(1-3): 1-7.
doi: 10.1016/S0304-4165(02)00510-X pmid: 12595066
[56]   Kim S S, Douglas C J.Sporopollenin monomer biosynthesis in arabidopsis. Journal of Plant Biology, 2013, 56(1): 1-6.
doi: 10.1007/s12374-012-0385-3
[57]   Rohde A.Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.Plant Cell, 2004, 16(10): 2749-2771.
doi: 10.1105/tpc.104.023705
[58]   Zhai J, Zhang H, Arikit S, et al.Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proceedings of the National Academy of Sciences of the USA, 2105, 112(10): 3146-3151.
[59]   Fan Y, Yang J Y, Mathioni S M,et al.PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proceedings of the National Academy of Sciences of the USA, 2016, 113(52): 15144-15149.
doi: 10.1073/pnas.1619159114 pmid: 27965387
[60]   Cuperus J T, Montgomery T A, Fahlgren N, et al.Identification of MIR390a precursor processing-defective mutants in Arabidopsis by directgenome sequencing. Proceedings of the National Academy of Sciences of the USA, 2014, 107(1): 466-471.
doi: 10.1073/pnas.0913203107
[61]   Ariizumi T, Toriyama K.Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology. 2011, 62(1): 437-460.
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644
[62]   Quilichini T D, Grienenberger E, Douglas C J.The biosynthesis, composition and assembly of the outer pollen wall: A tough case to crack. Phytochemistry, 2015, 113(1): 170-182.
doi: 10.1016/j.phytochem.2014.05.002 pmid: 24906292
[63]   Shi J, Cui M, Yang L, et al.Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science, 2015, 20(11): 741-753.
doi: 10.1016/j.tplants.2015.07.010 pmid: 26442683
[64]   王多祥,祝万万,袁政,等. 水稻雄性发育功能基因的发掘及应用. 生命科学,2016, 28(10): 1180-1188.
[64]   Wang D X, Zhu W W, Yuan Z, et al.Functional research of rice male reproduction and its utilization in breeding. Chinese Bulletin of Life Sciences, 2016, 28(10): 1180-1188.
[65]   Liang Z, Zhang K, Chen K, et al.Targeted mutagenesis in ea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 2014, 41(2): 63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[66]   Kang D, Wang C, Xu Q, et al.Characterization of maize male sterile 2 mutant by phenotypic and RNA sequencing analyses. Plant Breeding, 2017, 136(3): 319-330.
doi: 10.1111/pbr.12468
[67]   Zhang D F, Wu S W, An X L, et al.Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal, 2017. DOI:10.1111/pbi.12786.
doi: 10.1111/pbi.12786 pmid: 28678349
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[3] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[6] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[7] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] WANG You-hua,ZOU Wan-nong,LIU Xiao-qing,WANG Zhaohua,SUN Guo-qing. Global Patent Analysis and Technology Prospect of Genetically Modified Maize[J]. China Biotechnology, 2019, 39(12): 83-94.
[10] Ai-guo SU,Wei SONG,Shuai-shuai WANG,Jiu-ran ZHAO. Advance on Cytoplasmic Male Sterility and Fertility Restoration Genes in Maize[J]. China Biotechnology, 2018, 38(1): 108-114.
[11] Zi SHI,Wei SONG,Jiu-ran ZHAO. Application of Male Sterility in Crop Heterosis[J]. China Biotechnology, 2018, 38(1): 126-134.
[12] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[13] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[14] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[15] YU Zi-qing, WU Suo-wei, ZHANG Dan-feng, LIU Shuang-shuang, XIE Ke, RAO Li-qun, WAN Xiang-yuan. Genetic Analysis and Gene Mapping of Recessive Genic Male Sterility14 (ms14) Mutant in Maize[J]. China Biotechnology, 2016, 36(10): 8-14.