Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 32-41    DOI: 10.13523/j.cb.20180104
Orginal Article     
Identification and Quantitative Study on Glycosylation Chain Modification of Antibody Drugs by Mass Spectrometry
Yi HUANG1,2,Xiao-yu LI2,Fang TIAN2,Xiao-hong QIAN2,Wan-tao YING1,2()
1 Anhui Medical University,Hefei 230032,China
2 State Key Laboratory of Proteomics, Beijing Proteome Research Center,National Center for Protein Science,Beijing Institute of Radiation Medicine, Beijing 102206,China
Download: HTML   PDF(1843KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective:

To establish a qualitative and quantitative method for the determination of antibody glycosylation from the level of intact glycopeptides based on LC-MS, and to apply it to qualitative and quantitative analysis of biomimetic drugs.

Methods:

The qualitative and quantitative analysis of glycoforms was carried out from the level of intact glycopeptides, and compared with the results from UPLC-FLR, the traditional glycan analysis approach. The optimal analysis strategy was established and used for the analysis of N-glycans on antibody biosimilars.

Result:

The UPLC-FLR methods obtained the quantitative result of seven glycoforms from bevacizumab; While the method of mass spectrometry quantified 19 glycoforms. After enrichment by hydrophilic interaction liquid chromatography (HILIC), 22 glycan forms were quantified. The quantitative results of the glycosylation mass of the trastuzumab showed good agreement.

Conclusion:

Based on the method of LC-MS, it has the advantages of fast speed, high sensitivity and high detection of glycoforms, and it is expected to be a stable quantitative strategy for site - specific glycosylation analysis of biopharmaceuticals.



Key wordsUPLC-FLR      LC-MS      Antibody drugs      Intact glycopeptides quantification     
Received: 18 July 2017      Published: 31 January 2018
ZTFLH:  Q816  
Cite this article:

Yi HUANG,Xiao-yu LI,Fang TIAN,Xiao-hong QIAN,Wan-tao YING. Identification and Quantitative Study on Glycosylation Chain Modification of Antibody Drugs by Mass Spectrometry. China Biotechnology, 2018, 38(1): 32-41.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180104     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/32

Fig.1 Experimental design
Fig.2 Chromatograms of N-glycans from Bevacizumab after fluorescent labeling
Fig.3 MS/MS spectrum of glycopeptide HN4H3F1_EEQYNSTYR from Bevacizumab
Fig.4 Quantitative result of glycoforms from UPLC-FLR analysis
Fig.5 Quantitative results of glycoforms after trypsin digestion
Fig.6 Quantitative results of glycoforms after HILIC enrichment
Fig.7 Correlative analysis of three methods for glycoforms identification results
糖型UPLC-FLR(%)(x±s)Trypsin(%)(x±s)HILIC(%)(x±s)
HN(1)4H(2)5F(3)10.47±0.2430.69±0.1521.01±0.035
HN4H4F129.63±0.09110.30±0.02715.47±0.016
HN4H3F163.92±0.01875.76±0.06875.79±0.018
HN4H33.75±1.0202.47±0.0131.42±0.003
HN3H3F10.46±1.255.66±0.7613.60±0.411
HN3H30.19±0.0320.49±0.0040.086±0.000
HN2H51.58±0.0130.64±0.0810.27±0.014
HN5H4F10.08±0.0020.09±0.004
HN5H40.02±0.0400.04±0.001
HN5H30.14±0.0030.17±0.008
HN4H5F1SA(4)10.04±0.0110.11±0.001
HN4H4F1SA10.06±0.0000.14±0.003
HN4H40.38±0.0130.60±0.461
HN3H6F1SA10.01±0.0010.02±0.001
HN3H6F10.02±0.0020.03±0.002
HN3H4F10.50±0.1940.59±0.045
HN5H3F10.33±0.010
HN4H5F20.01±0.006
HN4H50.11±0.012
HN3H40.03±0.009
HN2H80.05±0.034
HN2H60.04±0.100
HN3H4F1SA10.04±0.003
HN2H40.02±0.002
HN2H30.02±0.010
Table 1 Comparison of three methods for the quantitatiion of glycans
糖型UPLC-FLRTrypsinHILIC
x±sRSD(%)x±sRSD(%)x±sRSD(%)
HN(1)4H(2)5F(3)10.47±0.023.90.69±0.079.891.01±0.021.79
HN2H51.58±0.095.780.64±0.034.250.27±0.025.95
HN4H4F129.7±1.023.4410.30±0.767.3915.47±0.412.66
HN3H30.18±0.017.410.49±0.012.710.09±0.0033.81
HN4H33.75±0.246.472.47±0.156.141.42±0.032.43
HN4H3F163.9±1.251.9675.76±1.081.4375.80±0.460.61
HN3H3F10.46±0.037.075.66±0.193.433.6±0.051.26
Table 2 Comparison of three methods of parallel experimental RSD values
GlycoformHILICTrypsin
B006B007B008B006B007B008
HN(1)4H(2)5F(3)10.350.340.360.350.350.62
HN3H4F10.430.460.410.390.390.42
HN2H53.483.833.844.704.705.67
HN4H4F17.206.767.306.556.568.81
HN2H60.220.240.230.210.210.24
HN2H40.100.120.080.110.110.12
HN3H30.110.200.060.140.140.17
HN4H30.190.270.150.110.110.14
HN4H3F180.0076.5380.5479.4379.4076.28
HN2H70.070.080.060.110.110.08
HN2H30.020.020.010.040.040.03
HN2H80.040.030.040.050.050.05
HN3H3F16.487.055.997.457.476.94
HN5H3F10.420.380.380.220.220.24
HN3H5F10.040.040.030.050.050.05
HN5H4F10.080.070.070.080.080.12
HN4H4F1SA(4)10.200.130.12
HN4H5F1SA10.090.060.05
HN3H4F1SA10.110.080.06
HN4H40.283.260.15
HN5H30.090.050.05
Table 3 Comparison of the quantitative results of the mixture of trastuzumab monoclonal antibody between three batches
[1]   翁锦玉. 国际生物医药产业发展趋势分析.科技与创新,2017, 1(1): 1-2.
[1]   Weng J Y.Analysis of international biomedical industry development trend . Science and Technology & Innovation,2017, 1(1): 1-2.
[2]   刘艳玲,刘晓志,赵伟,等.糖蛋白药物的多糖结构解析进展.生物技术进展,2016, 6(4): 244-248.
[2]   Liu Y L,Liu X Z, Zhao W, et al.Progress on glycan analysis of therapeutic glycoprotein . Current Biotechnology,2016, 6(4): 244-248.
[3]   Yang X,Kim S M,Ruzanski R,et al.Μltrafast and high-throughput N-glycan analysis for monoclonal antibodies.MAbs Taylor & Francis,2016, 8(4): 706-717.
[4]   Reusch D, Haberger M, Maier B, et al.Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-part 1:Separation-based methods.MAbs Taylor & Francis,2015, 7(1): 167-179.
doi: 10.4161/19420862.2014.986000 pmid: 25524468
[5]   Yang N,Goonatilleke E,Park D,et al.Quantitation of site-specific glycosylation in manufactured recombinant monoclonal antibody drugs. Analytical Chemistry,2016, 88(14): 7091-7100.
doi: 10.1021/acs.analchem.6b00963 pmid: 4955800
[6]   Planinc A,Dejaegher B,Vander Heyden Y,et al. Batch-to-batch N-glycosylation study of infliximab, trastuzumab and bevacizumab, and stability study of bevacizumab. Eur J Hosp Pharm,2017, 24(5): 286-292.
[7]   Sanchez-De Melo I,Grassi P,Ochoa F,et al. N-glycosylation profile analysis of trastuzumab biosimilar candidates by normal phase liquid chromatography and MALDI-TOF MS approaches . Journal of Proteomics,2015, 127: 225-233.
doi: 10.1016/j.jprot.2015.04.012 pmid: 25907685
[8]   任跃明. 国内外生物技术类制品质量标准差异浅析. 中国执业药师, 2012, 9(9): 60-64.
doi: 10.3969/j.issn.1672-5433.2012.09.012
[8]   Ren Y M.Discussion on the official standards of biotechnological products in Chinese and European Pharmacopeias.China Licensed Pharmacist, 2012, 9(9): 60-64.
doi: 10.3969/j.issn.1672-5433.2012.09.012
[9]   高凯, 徐志凯, 任跃明, 等. 关于我国药典单克隆抗体类生物治疗药物总论的思考. 中国生物工程杂志, 2014, 34(1): 127-134.
doi: 10.13523/j.cb.20140117
[9]   Gao K, Xu Z K, Ren Y M, et al.Points to consider for the general monograph of monoclonal antibody based biotherapeutics in chinese pharamacopeia .China Biotechnology, 2014, 34(1): 127-134.
doi: 10.13523/j.cb.20140117
[10]   Liu M Q, Zeng W F, Fang P, et al.pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nature Communications, 2017, 8(1): 438.
doi: 10.1038/s41467-017-00535-2 pmid: 5585273
[1] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[2] Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11[J]. China Biotechnology, 2018, 38(6): 26-33.
[3] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[4] YANG Yang, YANG Jiang-ke, XIONG Wei, LIANG Jian-fang, DUAN Wei-wei, CHAO Qun-fang. Cloning and Expression of Dioxygenase Gene from Aeromonas sp. XJ-6 and Promoting Degradation of Tyr[J]. China Biotechnology, 2016, 36(5): 59-67.
[5] LIU Dong-mei, SUN Jia-nan, ZOU Jia-ning, LIU Ming-wei, SUN Lu, LIU Qiong-ming. Screening Interacting Proteins for BAG Domains of BAG Family Proteins by GST pull-down Coupled with LC-MS/MS[J]. China Biotechnology, 2015, 35(4): 1-10.
[6] ZHAO Feng, ZHANG Yi-jun, RAN Yan-hong, WANG Xing-yong, YE Qian-jun, LI Hong-jian. Analysis of rhIL-12 Disulfide Bond And N-glycosylation Sites and C-terminal Amino Acid Sequence[J]. China Biotechnology, 2014, 34(5): 39-53.
[7] LI Ming-zhu, HAN Wei-dong, Xing Guang-hui, TENG Zhen-lin, XUE Guo-mei, HOU Chen-rui, RUAN Hong-qiang, CHEN Wei. Research of N Terminal Sequencing Methods for Monoclonal Antibody Pharmaceuticals Blocked by Pyroglutamic Acid[J]. China Biotechnology, 2013, 33(8): 75-83.
[8] YANG Xiao-yan, YIN Xing-feng, ZHANG Liu-hui, HE Xiang, SUN Xue-song. Isolation and Identification of Zn2+ Binding Proteins in Streptococcus pyogenes by IMAC and LC-MS/MS[J]. China Biotechnology, 2011, 31(02): 30-37.
[9] ZHANG Ying, HE Jin-Sheng, HONG Chao. Advances and Applications of Recombinant Antibody Drugs[J]. China Biotechnology, 2009, 29(08): 102-106.