Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (1): 25-31    DOI: 10.13523/j.cb.20180103
Orginal Article     
Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales
Ting AN1,Jing JI1(),Yu-rong WANG2,3,Zhi-gang MA4,Gang WANG1(),Qian LI1,Dan YANG1,Song-hao ZHANG1
1 School of Environmental Science and Engineering,Tianjin University, Tianjin 300072, China
2 Tianda Tianfu Bio.Co.LTD, Tianjin 300072, China
3 UCSD, Biological Sciences, Molecular Biology, California 92093, USA
4 School of Chemical Engineering and Technology, Tianjin University ,Tianjin 300072,China
Download: HTML   PDF(546KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Genetic engineering is an important means to improve the traits of lily. To establish an efficiency and stable transformation system is the basis of transgenic research. The different regeneration systems of lily were screened. The vector containing the target gene GR and selection gene NPTII was screened by Agrobacterium tumefaciens. Establish efficiency genetic transformation system for callus and scales through orthogonal test. The results showed that the optimum culture conditions as follow. The medium of lily scale inducing was MS+2mg/L 2,4-D + 0.1mg/L NAA + 90g/L + 0.2mg/L NAA + 30g/L sucrose. Indirect differentiation medium was MS+2.5mg/L 2,4-D+0.4mg/L 0.4mg/L TDZ+60g/L sucrose. The Kana selection pressure for scales was 100mg/L and for callus was 75mg/L. The direct genetic transformation of the scales was Agrobacterium OD600 = 0.6, pre-culture for 3 days, infiltrating for 40min, As 200μmol/L. The indirect callus transformation was: Agrobacterium OD600, pre-incubated for 5 days, infiltrating for 40min, As 200μmol/L. The direct and indirect positive plant transformation rates were 17.50% and 12.60%.



Key wordsLily      Genetic transformation      GR      Regeneration system      Direct differentiation     
Received: 14 July 2017      Published: 31 January 2018
ZTFLH:  Q813  
Cite this article:

Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales. China Biotechnology, 2018, 38(1): 25-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180103     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I1/25

NPTII基因引物序列GR基因引物序列
引物名称引物序列引物名称引物序列
NPTII-F5'-GCTATGACTGGGCACAACAG-3'LcGR F5'-TCGTAATAGGTGCTGGAAGTGGT-3'
NPTII-R5'-AAGGAGCACGAAATGCCATA-3'LcGR R5'-ATGTGCTTCGCCGAATAGGTTA-3'
Table 1 Primers of gene sequences
Fig.1 The map of pCAMBIA2300-LcGR vector
编号2,4-D
(mg /L)
NAA
(mg /L)
蔗糖
(g /L)
增殖分
化率(%)
1103030 e
210.16040 de
310.29045 d
4206075 c
520.190100 a
620.23070 c
7306085 bc
830.13075 c
930.29090 ab
Table 2 Effects of different concentrations of 2,4-D, NAA and sucrose on the proliferation of scales
Fig.2 The regeneration process of lily(a) Proliferation and enlargement of lily scale (b) Buds inducement of scales (c) Callus inducement from scales (d) Rooting differentiation
编号6-BA
(mg /L)
NAA
(mg /L)
分化率(%)生长状态
10.50.270 bc浅绿,较弱
20.50.480 b浅绿,较弱
30.50.680 b浅绿,健康
410.295 a深绿,强壮
510.480 b深绿,健康
610.665 c深绿,较慢
71.50.265 c浅绿,健康
81.50.450 d细弱,缓慢
91.50.650 d细弱,缓慢
Table 3 Effects of 6-BA and NAA on adventitious bud formation in scale adventitious directly
编号2,4-D
(mg /L)
TDZ
(mg /L)
蔗糖
(g /L)
分化率(%)
120.13030 f
220.26070 e
320.39089 ab
42.50.46092 a
52.50.69070 e
62.50.23070 e
730.46085 bc
830.23075 de
930.69080 cd
Table 4 Effects of different concentrations of 2,4 - D, TDZ and sucrose on callus induction
Kan浓度(mg /L)鳞片褐化率(%)愈伤组织褐化率(%)
000
2522.426.1
5049.264.3
7568.892.3
10095.7100
125100100
Table 5 Sensitivity tests of antibiotics applied on tissues
序 号农杆菌
OD
预培养
时间(d)
侵染时
间(min)
As浓度
(μmol/L)
分化率
(%)
最终转化
率(%)
10.41201009.64.69 f
20.433015010.686.52de
30.454020019.29.73 b
40.613015010.687.59cd
50.634020030.2012.9 a
60.652010020.309.21bc
70.813015012.907.67cd
80.832010010.405.84ef
90.854020013.407.91cd
Table 6 Optimization of scale transformation conditions
序号农杆菌
OD
预培养
时间(d)
侵染时
间(min)
As浓度
(μmol/L)
分化率
(%)
最终转化
率(%)
10.412010012.802.10 d
20.433015031.007.05 bc
30.454020032.0011.6 a
40.613015012.404.58 cd
50.634020025.509.21 bc
60.652010020.208.20 bc
70.81301509.204.06 cd
80.832010011.27.83 cd
90.854020016.308.13 bc
Table 7 Optimization of callus transformation conditions
Fig.3 Trans formation(a) Direct differentiation in translation (b) Indirect differentiation in translation
Fig.4 Electrophoresis of PCR product of NPTII and LcGR genes in the transgenic lily lines
[1]   Wang Y, Be van K, Ti M, et al. Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tissue Organ Culture,2012, 111: 113-122.
doi: 10.1007/s11240-012-0172-3
[2]   Adisa P, Jasmina C, Edina M, et al.Induction of bulblets on leaf and bulb explants of endangered Lilium bosniacum (G. Beck)G. Beck ex Fritsch. Botanica Serbica,2011, 35(1): 31-35.
[3]   Mehdi B, Mesbah B, Masoud M.Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boissan endangered species. Plant Cell Tissue and Organ Culture,2010, 102: 229-235.
doi: 10.1007/s11240-010-9726-4
[4]   Mori S, Adachi Y, Horimoto S.Callus formation and plant regeneration in various Lilium species and cultivars. In Vitro Cellular &Developmental Biology, 2005, 41(6): 783-788.
doi: 10.1079/IVP2005707
[5]   Sharma K K, Bhatnagar M P, Thorpe T A.Genetic transformation technology: status and problems. In Vitro Cellular & Developmental Biology- Plant,2005, 41(2): 102-112.
doi: 10.1079/IVP2004618
[6]   Kim E K, Hahn E J, Murthy H N.High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell Tissue and Organ Culture, 2003, 73: 231-236.
doi: 10.1023/A:1023029302462
[7]   胡凤荣. 百合种质资源鉴定与组培快繁技术体系研究.南京:南京林业大学,2007.
doi: 10.7666/d.y1196102
[7]   Hu F R.Study on the Technical System of Lily Germplasm Identification and Tissue Culture. Nanjing:Nanjing Forestry University, 2007.
doi: 10.7666/d.y1196102
[8]   Francisco F, Nú?ez C G, Michael R D, et al.Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Reports,2015, 34: 1201-1209.
doi: 10.1007/s00299-015-1778-9 pmid: 25744417
[9]   Liu X H, Gu J H, Wang J M, et al.Lily breeding by using molecular tools and transformation systems. Molecular Biology Reports,2014, 41(10): 6899-6908.
doi: 10.1007/s11033-014-3576-9 pmid: 25037269
[10]   Hoshi Y, Kondo M, Mori S, et al.Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Reports, 2004, 22(6): 359-364.
doi: 10.1007/s00299-003-0700-z
[11]   张延龙,梁建丽,牛立新.东方百合试管鳞茎膨大的研究.西北农林科技大学学报(自然科学版), 2006, 34(6): 75-78.
doi: 10.3321/j.issn:1671-9387.2006.06.015
[11]   Zhang Y L, Ling J L, Niu L X.Research on the growth of oriental lily bulblet in tube.Journal of Northwest Science Tech University of Agriculture and Forest,2006, 34(6): 75-78.
doi: 10.3321/j.issn:1671-9387.2006.06.015
[12]   向地英,薛木易,邹丽红.铁炮百合离体再生体系的建立.江苏农业科学,2015, 43(2): 55-57.
doi: 10.15889/j.issn.1002-1302.2015.02.016
[12]   Xiang D Y, Xue M Y, Zou L H.Establishment of regeneration system of Lilium longiflorum. Journal of Jiangsu Agricultural Sciences,2015, 34(6): 75-78.
doi: 10.15889/j.issn.1002-1302.2015.02.016
[13]   张杰,李洋,孙红梅.LA系列百合‘Eyeliner’花器官组培快繁技术研究.西北植物学报,2014, 34(9): 1894-1899.
doi: 10.7606/j.issn.1000-4025.2014.09.1894
[13]   Zhang J, Li Y, Sun H M.Floral organs tissue culture and rapid propagation technology of Lilium longiflorum×L.asiatic hybrid ‘Eyeliner’. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1894-1899.
doi: 10.7606/j.issn.1000-4025.2014.09.1894
[14]   Ma Z, An T, Zhu X, et al. GR1-like gene expression in Lycium chinense was regulated by cadmium-induced endogenous jasmonic acids accumulation. Plant Cell Reports, 2017, 36: 1457-1476.
doi: 10.1007/s00299-017-2168-2 pmid: 28656324
[15]   贾翠翠,季静,王罡,等.过表达谷胱甘合成酶基因增强烟草对镉的耐受性.中国生物工程杂志,2014, 34(10): 79-86.
doi: 10.13523/j.cb.20141013
[15]   Jia C C, Ji J, Wang G, et al.Over-expression of glutathione synthase gene enhances Cadmium tolerance in transgenic tobacco plant.China Biotechnology,2014, 34(10): 79-86.
doi: 10.13523/j.cb.20141013
[16]   Wang Y, Kronen B C, Menzel T R. Agrobacterium-mediated transformation of Lilium longiflorum. IXthIntl Symp on Flower Bulbs, 2005, 67(3): 543-547.
[17]   Duong T N, Bui V L, Michio T, et al. Shoot induction and plant regeneration from receptacle tissues ofLilium longiflorum,2001, 87(1-2): 131-138.
[18]   Tang D Q, Qian H M, Huang D F, et al. Establishment of gene transformation acceptor system of embryogenic callus in lily.Journal of Zhejiang Forestry College,2003, 20(3): 273-276.
doi: 10.1023/A:1022289509702
[19]   Gheysen G, Angenon G, Van Montagu M, Transgenic Plants: Agrobacterium Tumefaciens-mediated Transformation and Its Used for Crop Improvement//Murray J A H. Transgenesis. John Wiley: Sons Chichester, 1992: 187-232.
[1] LI Shi-rong,CHEN Yang-qin,ZHANG Chun-pan,QI Wen-jie. RS4651 Inhibits the EMT of Mouse Hepatocyte AML12 via Upregulating SMAD7[J]. China Biotechnology, 2021, 41(7): 1-9.
[2] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[3] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[4] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[5] TAN Qing-li,LIN Dai-heng,LIU Jia-yuan,LIN Xing-chun. Study on the Benefits of Biomedical Industry in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Grey Comprehensive Correlation Analysis[J]. China Biotechnology, 2021, 41(6): 89-97.
[6] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[7] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[8] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[9] ZHANG Qiao-zhen,WU Wen-ting,LI Zi-xuan,ZHAO Xin-bo,HU Bing,LIU Cong,SUI Zheng-wei,LIU Hong-tu,ZHANG Le. Using Data Mining Technology to Carry Out Bioinformatics Study for Human Rabies in Hubei Province of China[J]. China Biotechnology, 2021, 41(2/3): 14-29.
[10] FU Gui-e,LI Jin,GENG Pei-ran,SHEN Meng-qiu,ZHANG Jin-qian-nan,ZHAO Xi-chen. A Study on COVID-19 Prevention Force of Typical Cities in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Medical Perspective[J]. China Biotechnology, 2021, 41(12): 125-140.
[11] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[12] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[13] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[14] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[15] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.