Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (11): 52-58    DOI: 10.13523/j.cb.20171108
    
Expression, Purification and Functional Assay of ArlSCA from Staphylococcus aureus
WANG Lu-lu1,2, QUAN Chun-shan2,3, XU Yong-bin2,3, CHEN Jin-li2,3, WU Yi2,3, WANG Guan-tian2,3, DONG Yue-sheng1
1. School Environment & Biological Science & Technology, Dalian University of Technology, Dalian 116024, China;
2. Key Laboratory of Biotechnology and Bioresources Utilization, State Ethnic Affairs Commission and Ministry of Education, Dalian 116000, China;
3. College of Life Science, Dalian Minzu University, Dalian 116600, China
Download: HTML   PDF(878KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Staphylococcus aureus is a crucial opportunistic pathogen, and the expression of virulence factors in S. aureus is regulated by various of two component signal transduction systems (TCSTs). ArlRS TCST has a close relation with the growth and division of bacteria, and the signal transduction of ArlRS TCST is implemented by the autophosphorylation of histidine kinase ArlS. The intracellular domain of ArlS is regarded as an important functional domain that regulates the expression of virulence factors. The research focus on the kinase activity and function of the intracellular domain of ArlS. The recombinant plasmids pProEX-HTa-arls and pProEX-HTa-arlr were constructed and the target proteins were overexpressed in E. coli BL21. Then different kinds of isolation technologies such as the metal ion affinity chromatography, the ion exchange chromatography and the gel filtration chromatography were used for purification of the recombinant proteins. The production of ArlR can reach 25mg with about 98% purity from one liter culture medium, and the production of ArlS can reach 15mg with about 90% purity from one liter culture medium. The circular dichroism detection results showed that the purified ArlR has natural secondary structure. In vitro phosphorylation results showed that ArlS exhibited kinase activity and the ability of autophosphorylation. Furthermore, the phosphorylated ArlS can transfer the phosphate groups to the response regulator protein ArlR. Finally, the recombinant plasmids pProEX-HTa-ArlSCAG418A and pProEX-HTa-ArlSCAG420A were constructed by the method of site-direted mutation, and proteins of ArlSCAG418A and ArlSCAG420A were purified using the metal ion affinity chromatography. The results showed that ArlSCAG418A and ArlSCAG420A did not have the kinase activity, illustrating that the amino acid residues at 418 and 420 are crucial to the autophosphorylation process of ArlS.

Key wordsArlSCA      Kinase activity      Staphylococcus aureus      Purification     
Received: 19 April 2017      Published: 15 November 2017
ZTFLH:  Q816  
Cite this article:

WANG Lu-lu, QUAN Chun-shan, XU Yong-bin, CHEN Jin-li, WU Yi, WANG Guan-tian, DONG Yue-sheng. Expression, Purification and Functional Assay of ArlSCA from Staphylococcus aureus. China Biotechnology, 2017, 37(11): 52-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171108     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I11/52

[1]   Thompson K A, Copley V R, Parks S, et al. Staphylococcus aureus dispersal from healthy volunteers. Am Jinfect Control, 2014, 42(3):260-264.
[2]   宋娟, 楚雍烈. 金黄色葡萄球菌基因调节系统研究进展. 生命科学, 2012, 24(5):463-469. Song J, Chu Y L. Advances in research of gene regulation sustems in Staphylococcus aureus. Chinese Bulletin of Life Sciences, 2012, 24(5):463-469.
[3]   Junecko J M, Zielinska A K, Mrak L N, et al. Transcribing virulence in Staphylococcus aureus. WJCID, 2012, 2(4):63-76.
[4]   路荣, 韩文瑜. 金黄色葡萄球菌调控基因agr及sae对其耐热核酸酶分泌的影响. 河北科技师范学院学报, 2010, 24(4):28-31. Lu R, Han W Y. Isolation and analysis of non-tuberculous Mycobacteria from bovine. Journal of Hebei Normal University of Sci and Tech, 2010, 24(4):28-31.
[5]   Rasko D A, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov, 2010, 9(2):117-128.
[6]   Barczak A K, Hung D T. Productive steps toward an antimicrobial targeting virulence. Curr Opin Microbiol, 2009, 12(5):490-496.
[7]   Cegelski L, Marshall G R, Eldridge G R, et al. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol, 2008, 6(1):17-27.
[8]   Dancer S J, Kirkpatrick P, Corcoran D S, et al. Approaching zero:temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum -lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents, 2013, 41(2):137-142.
[9]   Hiramatsu K, Aritaka N, Hanaki H, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet, 1997, 350(9092):1670-1673.
[10]   Weigel L M, Clewell D B, Gill S R, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science, 2003, 302(5650):1569-1571.
[11]   Fournier B, Hooper D C. A new two-component regulatory system involved in adhesion, autolysis, and extra cellular proteolytic activity of Staphylococcus aureus. J Bacteriol, 2000, 182(14):3955-3964.
[12]   Lindsay J A, Foster S J. Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Mol Gen Genet, 1999, 262(20):323-331.
[13]   于冰, 杨光, 邵宁生. 金黄色葡萄球菌中二元调控系统agr及与其他二元系统相互作用的研究进展. 军事医学科学院院刊, 2007, 31(2):187-190. Yu B, Yang G, Shao N S. Advances in the research on two-component regulatory system, agr, and its in teraction with other two-component systems in Staphylococcus aureus. Acad Mil Med Sci, 2007, 31(2):187-190.
[14]   Walker J N, Crosby H A, Spaulding A R, et al. The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog, 2013, 9(12):1-17.
[15]   李明, 胡福泉, 唐家琪. 二元信号转导系统与细菌的致病性. 微生物学杂志, 2007, 27(1):58-62. Li M, Hu F Q, Tang J Q. Dual signal transduction system and bacterial pathogenicity. J Microbiol, 2007, 27(1):58-62.
[16]   Mascher T, Helmann J D, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 2006, 70(4):910-938.
[17]   Gao R, Stock A M. Biological insights from structures of two-component proteins. Annu Rev Microbiol, 2009, 1(63):133-154.
[18]   Galperin M Y. A census of membrane-bound and intracellular signal transduction proteins in bacteria:bacterial IQ, extroverts and introverts. BMC Microbiol, 2005, 5(35):1-19.
[19]   Sandeep K S, Kalagiri R, Aneesa F, et al. Influence of the AgrC-AgrA complex in the response time of Staphylococcus aureus quorum sensing. J Bacteriol, 2014, 196(15):2876-2888.
[20]   Wang B Y, Zhao A, Novick R P, et al. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions. Mol Cell, 2014, 53(6):929-940.
[21]   张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10):7-8. Zhang Y F, Sha W. The summary of transcription factors. Biol Teach, 2009, 34(10):7-8.
[22]   Liang X, Zheng L, Landwehr C, et al. Global regulation of gene expression by ArlRS, a two component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol, 2005, 187(15):5486-92.
[23]   Wang L N, Quan C S, Xiong W, et al. New insight into transmembrane toplogy of Staphylococcus aureus histidine kinase AgrC. Biochim Biophys Acta, 2014,1838(3):988-993.
[24]   Wu Y, Liu J G, Jiang J, et al. Role of the two-component regulatory system arlRS in ica operon and aap positive but non-biofilm-forming Staphylococcus epidermidis isolates from hospitalized patients. Microb Pathogenesis, 2014, 76(2014):89-98.
[25]   王路路, 权春善, 许永斌, 等. 跨膜蛋白AgrCTM6-7C分离纯化方法的优化. 生物技术通报, 2016, 32(7):59-65. Wang L L, Quan C S, Xu Y B, et al. Optimization of the purification method for transmembrane protein AgrCTM6-7C. Biotechnol Bull, 2016, 32(7):59-65.
[26]   张浩, 毛秉智. 定点突变技术的研究进展. 免疫学杂志, 2000, 16(4):108-110. Zhang H, Mao B Z. Advance in technology of site-directed mutagenesis. Immunol J, 2000, 16(4):108-110.
[27]   Zhang B, Wan F, Qiu Y L, et al. Increased L-arginine production by site-directed mutagenesis of N-acetyl-L-glutamate kinase and proB gene deletion in Corynebacterium crenatum. Biomed Environ Sci, 2015, 28(12):864-874.
[1] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.
[2] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[3] JIANG Dan-dan,WANG Yun-long,LI Yu-lin,Zhang Yi-qing. Study on the Delivery of RGD Modified Virus-Like Particles to ICG Targeted Tumors[J]. China Biotechnology, 2020, 40(7): 22-29.
[4] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.
[5] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[6] LIU Zhen-zhen,TIAN Da-yong. Development of Sucrose Density Gradient Centrifugation Purification Process for Rabies Vaccine[J]. China Biotechnology, 2020, 40(4): 25-33.
[7] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[8] PAN Bing-jv,ZHANG Wan-yi,SHEN Hui-tao,LIU Ting-ting,LI Zhong-yuan,LUO Xue-gang,SONG Ya-jian. Research Progress on Separation and Purification of Mannan Oligosaccharide[J]. China Biotechnology, 2020, 40(11): 90-95.
[9] Yu-feng XIE,Xue-mei HAN,Fu-ping LU. Expression, Purification and Enzymatic Properties of β-glucosidase from Lactobacillus paracasei[J]. China Biotechnology, 2019, 39(5): 72-79.
[10] JING Jia-mei,XUN Xin,WANG Min,PENG Ru-chao,SHI Yi. Expression and Purification of C-terminal of Arenavirus Polymerase and Screening of Crystallization Conditions[J]. China Biotechnology, 2019, 39(12): 18-23.
[11] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[12] Chao-di TONG,Jian-ping WU,Li-rong YANG,Gang XU. Crystal Structural Analysis of DehDIV-R by X-ray Crystallography[J]. China Biotechnology, 2018, 38(8): 19-25.
[13] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[14] Shi-jie LI,Yan-kun YANG,Meng LIU,Zhong-hu BAI,Jian JIN. Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag[J]. China Biotechnology, 2018, 38(3): 51-61.
[15] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.