Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (5): 107-112    DOI: 10.13523/j.cb.20170513
    
Development of Neurogenesis in the Adult Mammalian
JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping
School of Life Sciences, Nanchang University, Nanchang 330031, China
Download: HTML   PDF(391KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Neural stem cells (NSCs) are stem cells with the ability of self-renewal and multiple differentiation potential. Under certain circumstances,NSCs are able to differentiate into neurons,oligodendrocytes and astrocytes,participating in functional recovery of neural system, which is known as neurogenesis. It has always been considered that neurogenesis occurs predominantly in embryonic period but not in adulthood of mammalian. However,recent studies have shown that neurogenesis occurs throughout lifetime in the central nervous system of mammalian, meanwhile it can be regulated via a variety of signaling pathways. Here the review focus on current researches of neurogenesis in adult mammals.



Key wordsSignal pathway      Neural stem cells      Neurogenesis     
Received: 05 December 2016      Published: 25 May 2017
ZTFLH:  Q819  
Cite this article:

JIANG Chun-lian, WANG Yan-lu, LUO Yu-ping. Development of Neurogenesis in the Adult Mammalian. China Biotechnology, 2017, 37(5): 107-112.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170513     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I5/107

[1] Ming G L, Song H. Adult neurogenesis in the mammalian brain:significant answers and significant questions. Neuron, 2011, 70(4):687-702.
[2] Duan X, Kang E, Liu C Y, et al. Development of neural stem cell in the adult brain. Current Opinion in Neurobiology, 2008, 18(1):108-115.
[3] Wang T W, Stromberg G P, Whitney J T, et al. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones. The Journal of Comparative Neurology, 2006, 497(1):88-100.
[4] Beckervordersandforth R, Tripathi P, Ninkovic J, et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 2010, 7(6):744-758.
[5] Luo Y, Coskun V, Liang A, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 2015, 161(5):1175-1186.
[6] Coskun V, Wu H, Blanchi B, et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3):1026-1031.
[7] Codega P, Silva-Vargas V, Paul A, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 2014, 82(3):545-559.
[8] Bonaguidi M A, Wheeler M A, Shapiro J S, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011, 145(7):1142-1155.
[9] Doetsch F. The glial identity of neural stem cells. Nature Neuroscience, 2003, 6(11):1127-1134.
[10] Zhao C, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132(4):645-660.
[11] Ming G L, Song H. Adult neurogenesis in the mammalian central nervous system. Annual Review of Neuroscience, 2005, 28(7):223-250.
[12] Bond A M, Ming G L, Song H. Adult mammalian neural stem cells and neurogenesis:five decades later. Cell stem cell, 2015, 17(4):385-395.
[13] Sawamoto K, Wichterle H, Gonzalez-Perez O, et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 2006, 311(5761):629-632.
[14] Brill M S, Ninkovic J, Winpenny E, et al. Adult generation of glutamatergic olfactory bulb interneurons. Nature Neuroscience, 2009, 12(12):1524-1533.
[15] Bonaguidi M A, Wheeler M A, Shapiro J S, et al. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 2011, 145(7):1142-1155.
[16] Berg D K,Yoon K J, Will B,et al. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front Biol,2015,10(3):262-271.
[17] Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Frontiers in Cellular Neuroscience, 2015,8(440):1-7.
[18] Sun G J, Zhou Y, Stadel R P, et al. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9484-9489.
[19] Amrein I, Lipp H P. Adult hippocampal neurogenesis of mammals:evolution and life history. Biology Letters, 2009, 5(1):141-144.
[20] Lee D A, Yoo S, Pak T, et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Frontiers in Neuroscience, 2014, 8(157):1-11.
[21] Robins S C, Trudel E, Rotondi O, et al. Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS One, 2013, 8(10):e78236.
[22] Rizzoti K, Lovell-Badge R. Pivotal role of median eminence tanycytes for hypothalamic function and neurogenesis. Molecular and Cellular Endocrinology, 2016,15(445):7-13.
[23] Rodriguez E M, Blazquez J L, Pastor F E, et al. Hypothalamic tanycytes:a key component of brain-endocrine interaction. International Review of Cytology, 2005, 247(12):89-164.
[24] Haan N, Goodman T, Najdi-Samiei A, et al. Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2013, 33(14):6170-6180.
[25] Saper C B, Lowell B B. The hypothalamus. Current Biology:CB, 2014, 24(23):R1111-1116.
[26] Lee D A, Bedont J L, Pak T, et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nature Neuroscience, 2012, 15(5):700-702.
[27] Winner B, Winkler J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 2015, 7(4):a021287.
[28] De Ferrari G V, Moon R T. The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene, 2006, 25(57):7545-7553.
[29] Ciani L, Salinas P C. WNTs in the vertebrate nervous system:from patterning to neuronal connectivity. Nature Reviews Neuroscience, 2005, 6(5):351-362.
[30] Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 2004, 20(11):781-810.
[31] Lie D C, Colamarino S A, Song H J, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063):1370-1375.
[32] Adachi K, Mirzadeh Z, Sakaguchi M, et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 2007, 25(11):2827-2836.
[33] Chao C C, Kan D, Lu K S, et al. The role of microRNA-30c in the self-renewal and differentiation of C6 glioma cells. Stem Cell Research, 2015, 14(2):211-223.
[34] Shelly M, Cancedda L, Lim B K, et al. Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron, 2011, 71(3):433-446.
[35] Sun T, Li W, Ling S. miR-30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Proliferation, 2016, 49(3):270-280.
[36] Zhong W, Chia W. Neurogenesis and asymmetric cell division. Current Opinion in Neurobiology, 2008, 18(1):4-11.
[37] Bray S, Bernard F. Notch targets and their regulation. Current Topics in Developmental Biology, 2010, 92(9):253-275.
[38] Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system:insights from mouse mutants. Nature Neuroscience, 2005, 8(6):709-715.
[39] Imayoshi I, Sakamoto M, Yamaguchi M, et al. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2010, 30(9):3489-3498.
[40] Ables J L, Decarolis N A, Johnson M A, et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2010, 30(31):10484-10492.
[41] Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes & Development, 2012, 26(10):1010-1021.
[42] Andersen J, Urban N, Achimastou A, et al. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron, 2014, 83(5):1085-1097.
[43] Liu H K, Belz T, Bock D, et al. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone. Genes & Development, 2008, 22(18):2473-2478.
[44] Song J, Zhong C, Bonaguidi M A, et al. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489(7414):150-154.
[45] Hodge R D, Nelson B R, Kahoud R J, et al. Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2012, 32(18):6275-6287.
[46] Doetsch F, Caille I, Lim D A, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999, 97(6):703-716.

[1] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[2] WANG Tian-zhu,WU Qing,ZHANG Ning,WANG Dong-jie,XU Zhou,LUO Wei,DU Zong-jun. Advances in Research on Melanin Synthesis and Signaling Pathway in Fish[J]. China Biotechnology, 2020, 40(5): 84-93.
[3] Yu-han CHENG,Xi GONG,Yu-ping LUO. Advances in Studies on the Structure, Function and Related Antibodies of CD133 (Prominin-1)[J]. China Biotechnology, 2019, 39(5): 105-113.
[4] Ming-ming HAN,Yu-ping LUO. Establishment and Identification of Endogenous CD133 + Cell Tracer Mouse Model[J]. China Biotechnology, 2018, 38(6): 58-62.
[5] ZHONG Peng-qiang,LIU Bei-zhong,YAO Juan-juan,LIU Dong-dong,YUAN Zhen,LIU Jun-mei,CHEN Min,ZHONG Liang. Knock-down of ACTL6A Promote Differentiation of NB4 Cells via the Notch1 Signaling Pathway[J]. China Biotechnology, 2018, 38(12): 1-6.
[6] SHEN Xin, MA Yi-tong, YANG Yi-ning, LIU Fen, YU Zi-Xiang, CHEN Bang-dang, CHEN You. Cardiac Transfection of AAV9-FrzA Gene Intervene Wnt Signal Pathway in Ischemic Heart Failure Mice[J]. China Biotechnology, 2013, 33(7): 13-17.
[7] WANG Fang- Du-Qiang-An- Shu-Wan-Wan- Tun-Di- Xu-Yan-Ling- Guan-Yun-Qian- Zhang-Yu. Impact of serially low density passage on Oct-4 positive percentage and neurogenesis potential of mouse ES derived progenitors in differentiated expanding stage[J]. China Biotechnology, 2009, 29(04): 39-45.
[8] . The Influence of Peptidoglycan of Lactobacillus on immune function of Mouse[J]. China Biotechnology, 2006, 26(08): 98-102.