Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (1): 89-96    DOI: 10.13523/j.cb.20170113
    
Bioinformatics Methods for Metabolome Research
LI Lian-wei1,2, ZHANG A-mei1, MA Zhan-shan2
1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan 650500, China;
2. Computational Biology and Medical Ecology Lab, State Key of Genetic Resource and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Yunnan 650223, China
Download: HTML   PDF(471KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The metabolome refers to a set of small molecular metabolites. The main purposes of metabolism are the conversion of fuel to energy to run cellular processes. The metabolome can reflect the process of metabolism, As a result, a cell's metabolome can serve as an excellent probe of its function. Cell function abnormality leads to the abnormal changes of metabolom, so metabolome can be assessment standards of the function of cell. The process of extraction and identification of metabolites and the analysis of metabolic data were briefly reviewed, including the pre-processing and network constructed of metabolome datasets.



Key wordsMetabolome      KEGG      Network     
Received: 29 September 2016      Published: 25 January 2017
ZTFLH:  Q493.1  
Cite this article:

LI Lian-wei, ZHANG A-mei, MA Zhan-shan. Bioinformatics Methods for Metabolome Research. China Biotechnology, 2017, 37(1): 89-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170113     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I1/89

[1] Oliver S G, Winson M K, Kell D B, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol, 1998, 16(9):373-378.
[2] Barabasi A L, Oltvai Z N. Network biology:understanding the cell's functional organization. Nat Rev Genet, 2004, 5(2):101-113.
[3] Lazar A G, Romanciuc F, Socaciu M A, et al. Bioinformatics Tools for Metabolomic Data Processing and Analysis Using Untargeted Liquid Chromatography Coupled With Mass Spectrometry. Bulletin of University of Agricultural Sciences. 2015, 72(2):103-115.
[4] Swerdlow R H. Bioenergetics and metabolism:a bench to bedside perspective. Journal of Neurochemistry. 2016, 139(52):126-135.
[5] Pornputtapong N, Nookaew I, Nielsen J. Human metabolic atlas:an online resource for human metabolism. Database, 2015:1-9.
[6] Patti G J, Yanes O, Siuzdak G. Innovation:Metabolomics:the apogee of the omics trilogy. Nature reviews. Molecular cell biology, 2012, 13(4):263-269.
[7] Ratcliffe R G. Probing plant metabolism with NMR. Annu.Rev.Plant Physiol.Plant Mol.Biol, 2001, 52(52):499-526.
[8] Gadian D G, Radda G K. NMR studies of tissue metabolism. Biochemistry, 1981,50:69-83.
[9] Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and bioanalytical chemistry, 2007, 387(2):525-527.
[10] Krone N, Hughes B A, Lavery G G, et al. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). The Journal of steroid biochemistry and molecular biology, 2010,121(3-5):496-504.
[11] Drexler D M, Reily M D, Shipkova P A. Advances in mass spectrometry applied to pharmaceutical metabolomics. Analytical and bioanalytical chemistry, 2011,399(8):2645-2653.
[12] Stycznski M P, Moxley J F, Tong L V, et al. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Analytical Chemistry, 2007,79(3):966-973.
[13] Schauer N, Steinhauser D, Strelkov S, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 2005,579(6):1332-1337.
[14] Gika H G, Theodoridis G A, Wingate J E, et al. Within-Day reproducibility of an HPLC-MS-Based method for metabonomic analysis:application to human urine. Journal of Proteome Research, 2007, 6(8):3291-3303.
[15] Coble J B, Fraga C G. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. Journal of Chromatography A. 2014, 1358:155-164.
[16] Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. Journal of chromatography, 2007,1158(1-2):318-328.
[17] Yao Y, Sun T, Wang T, et al. Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases. Metabolites, 2015, 5(3), 431-442.
[18] Sugimoto M, Kawakami M, Robert M, et al. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Current Bioinformatics, 2012,7(1):96-108.
[19] Smith C A, Want E J, O'Maille G, et al. XCMS:Processing mass spectrometry data for metabolite Profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 2006,78(3):779-787.
[20] Benton H P, Wong D M, Trauger S A, et al. XCMS2:Processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal Chem, 2008, 80(16):6382-6389.
[21] Brakhage A A. Regulation of fungal secondary metabolism. Nat Rev Microbiol, 2013, 11(1):21-32.
[22] Barabasi A L, Gulbahce N, Loscalzo J. Network medicine:a network-based approach to human disease. Nat Rev Genet, 2011,12(1):56-68.
[23] Fernanndez A F, Llorach R, Andres L C, et al. An R package to analyse LC/MS metabolomic data:MAIT (Metabolite Automatic Identification Toolkit). Bioinformatics, 2014, 30(13):1937-1939.
[24] Faust K, Dupont P, Callut J,et al. Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics, 2010,26(9):1211-1218.
[25] Cakir T, Patil K R, Onsan Z, et al. Integration of metabolome data with metabolic networks reveals reporter reactions. Mol Syst Biol, 2006, 2(1):50.
[26] Daran L P, Pronk J T, Heijnen J J, et al. When transcriptome meets metabolome:fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol, 2006, 2(1):49.
[27] Plongthongkum N, Lutz M, Berggren W T, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 2012, 22(1):168-177.
[28] Ghesquière B, Wong B W, Kuchnio A. Metabolism of stromal and immune cells in health and disease. Nature, 2014, 511(7508):167-176.
[29] Yizhak K, Chaneton B, Gottlieb B et al. Modeling cancer metabolism on a genome scale. Molecular Systems Biology. 2015, 11(6):817.
[30] Uzunlulu M, Caklili OT, Oguz A. Association between metabolic syndrome and cancer. Annals of Nutrition & Metabolism. 2016, 68(3):173-179.
[31] Ma Z, Shi X, Zhang G, et al. Metabolism and metabolic inhibition of xanthotoxol in human liver microsomes. Evidence-Based Complementary and Alternative Medicine. 2016,2:1-8.
[32] Psychogios N, Hau D D, Peng J, et al. The human Serum metabolome. PloS ONE, 2011, 6(2):e16957.
[33] Shlomi T, Cabili M N, Herrgard M J, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol, 2008,26(9):1003-1010.
[34] Nicholson G, Rantalainen M, Maher A D, et al. Human metabolic profiles are stably controlled by genetic and environmental variation. Mol Syst Biol, 2011, 7(1):525.
[35] Somel M, Liu X, Khaitovich P. Human brain evolution:transcripts, metabolites and their regulators. Nat Rev Neurosci, 2013,14(2):112-127.

[1] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[2] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[3] LIANG Dong, XING Yong-qiang, CAI Lu. The Construction and Analysis of the Coexpression Network for the Gene Related to Renal Tumor[J]. China Biotechnology, 2016, 36(2): 30-37.
[4] WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan. Comparsion of the Effects of pta and ack Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum[J]. China Biotechnology, 2015, 35(9): 28-34.
[5] WAN Fang, ZHANG Bin, CHEN Min-liang, CHEN Jin-cong, CHEN Xue-lan . Effects of proC and putP Deletion on Physiological Metabolism of L-arginine-producing Strain Corynebacterium crenatum[J]. China Biotechnology, 2015, 35(8): 51-58.
[6] ZHANG Bin, CHEN Jin-cong, WAN Fang, CHEN Min-liang, YANG Hui-lin, CHEN Xue-lan. Progress of Molecular Breeding in L-arginine Producing Strains[J]. China Biotechnology, 2014, 34(4): 127-132.
[7] XU Jun, LIU Cui-cui, DING De-wu, SUN Xiao, XIE Jian-ming. Reconstruction and Analysis of the Gene Regulatory Networks of Shewanella onedensis MR-1[J]. China Biotechnology, 2014, 34(11): 42-46.
[8] ZHOU Yong, ZHENG Yi, SONG Li-dan. The Optimization of Medium for Coenzyme Q10 Fermentation by Artificial Neural Network associated with Genetic Algorithms[J]. China Biotechnology, 2013, 33(9): 73-78.
[9] ZHOU Guang-qi, MA Peng-bo, LIU Qiao, QUAN Chun-shan, FAN Sheng-di. Optimization of Culture Medium and Prediction of Antibacterial Activity by Bacillus Amyloliquefaciens Q-426 Fermentation[J]. China Biotechnology, 2013, 33(11): 21-26.
[10] LI Jia-ping, ZHANG Xian-wen, CHEN Xin-bo. The Co-occurrence of Transcription Factor Binding Sites[J]. China Biotechnology, 2012, 32(09): 87-94.
[11] RUAN Jing-ling ZHEN-xin . Myostatin inhibits myogenic satellite cell differentiation through down-regulating MyoD expression by Smad3[J]. China Biotechnology, 2008, 28(5): 99-103.