Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (1): 53-57    DOI: 10.13523/j.cb.20170108
    
The Expression of α-Hemolysin and the Preparation of Its Nanopore
ZHUO Li-xia1, WANG Ying2, ZHANG Chun-ping2, DUAN Jing2, ZHANG Ya-ni1
1. The College of Life Science, Northwest University, Xi'an 710069, China;
2. College of Chemistry & Mateirals Secience, Northwest University, Xi'an 710069, China
Download: HTML   PDF(574KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

α-hemolysin (αHL) is a channel-forming toxin released by Staphylococcus aureus, which can form a transmembrane heptamers nanopore on eukaryotic cell membranes and other lipid bilayers. The αHL nanopore has been popularly used as a single molecule biosensor. In the present study, αHL was expressed in the host strain BL21(DE3)pLysS and purified by using molecular weight cut-off of ultrafiltration membranes. αHL heptameric nanopore was formed on rabbit red blood cell memberanes and characterized by using patch clamp technique and single channel current recording. αHL heptameric nanopore showed a stable structure and good ion permeability on lipid bilayer. It can be used as a stable single-molecule detection device. These results make a useful work for the preparation of α-hemolysin heptameric nanopore and the further exploring in the filed of single-molecule detection.



Key wordsSingle-channel current      Protein nanopore      α-hemolysin      Single-molecule detection device     
Received: 23 August 2016      Published: 25 January 2017
ZTFLH:  Q819  
Cite this article:

ZHUO Li-xia, WANG Ying, ZHANG Chun-ping, DUAN Jing, ZHANG Ya-ni. The Expression of α-Hemolysin and the Preparation of Its Nanopore. China Biotechnology, 2017, 37(1): 53-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170108     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I1/53

[1] Gray G S, Kehoe M. Primary sequence of the alpha-toxin gene from Staphylococcus aureus wood 46. Infection and Immunity, 1984, 46(2):615-618.
[2] Tobkes N, Wallace B A, Bayley H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry, 1985, 24(8):1915-1920.
[3] Song L, Hobaugh M R, Shustak C, et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 1996, 274(5294):1859-1866.
[4] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat Biotechnol, 2008, 26(10):1146-1153.
[5] Kang X F, Cheley S, Rice-Ficht A C, et al. A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc, 2007, 129(15):4701-4705.
[6] Ayub M, Bayley H. Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore. Nano Lett, 2012, 12(11):5637-5643.
[7] Bond P J, Guy A T, Heron A J, et al. Molecular dynamics simulations of DNA within a nanopore:arginine-phosphate tethering and a binding/sliding mechanism for translocation. Biochemistry, 2010, 50(18):3777-3783.
[8] Cracknell J A, Japrung D, Bayley H. Translocating kilobase RNA through the staphylococcal alpha-hemolysin nanopore. Nano Lett, 2013, 13(6):2500-2505.
[9] Yao F, Duan J, Wang Y, et al. Nanopore single-molecule analysis of DNA-doxorubicin interactions. Anal Chem, 2015, 87(1):338-342.
[10] Cheley S, Braha O, Lu X, et al. A functional protein pore with a "retro" transmembrane domain. Protein Sci, 1999, 8(6):1257-1267.
[11] Japrung D, Henricus M, Li Q, et al. Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore. Biophys J, 2010, 98(9):1856-1863.
[12] 王多宁, 赵雁武, 田芙蓉. 考马斯亮蓝微盘比色法测定蛋白质含量. 第四军医大学学报, 2001, 22(6):528-529. Wang D N, Zhao Y W, Tian F R. Protein quantif ication with coomassie bull iant blue microplate-colormetric. J Fourth Mil Med Univ, 2001, 22(6):528-529.
[13] Rotem D, Jayasinghe L, Salichou M, et al. Protein detection by nanopores equipped with aptamers. J Am Chem Soc, 2012, 134(5):2781-2787.
[14] Bayley H. Designed membrane channels and pores. Curr Opin Biotechnol, 1999, 10(1):94-103.
[15] Gu L Q, Dalla Serra M, Vincent J B, et al. Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc Natl Acad Sci USA, 2000, 97(8):3959-3964.
[16] Boersma A J, Brain K L, Bayley H. Real-time stochastic detection of multiple neurotransmitters with a protein nanopore. ACS Nano, 2012, 6(6):5304-5308.
[17] Gu L Q, Cheley S, Bayley H. Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. J Gen Physiol, 2001, 118(5):481-494.
[18] Hammerstein A F, Jayasinghe L, Bayley H. Subunit dimers of alpha-hemolysin expand the engineering toolbox for protein nanopores. J Biol Chem, 2011, 286(16):14324-14334.
[19] Mantri S, Sapra K T, Cheley S, et al. An engineered dimeric protein pore that spans adjacent lipid bilayers. Nature Communications, 2013, 4(2):216-219.