Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 79-85    DOI: 10.13523/j.cb.20161011
    
CRISPR-Cas9 System and Its Applications in Disease Models
ZHU Shao-yi1, GUAN Li-hong1,2, LIN Jun-tang1,2
1. College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China;
2. Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
Download: HTML   PDF(579KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) is a gene editing technique of which RNA guiding endonuclease to cleavage genome. The discovery of this technology promoted biological and medicinal studies. This simplicity of the CRISPR-Cas9 system has enabled its widespread applications in cell genome editing, animal models generation and gene therapy of disease models. The structure characteristics, mechanism and applications of CRISPR-Cas9 system were focused on.



Key wordsAnimal model      Genome editing      Gene therapy      CRISPR-Cas9     
Received: 14 June 2016      Published: 25 October 2016
ZTFLH:  Q789  
Cite this article:

ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models. China Biotechnology, 2016, 36(10): 79-85.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161011     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/79

[1] Mak T W. Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell, 2007, 131(6): 1027-1031.
[2] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
[3] Bassett A R, Tibbit C, Ponting C P, et al. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas system. Cell Rep, 2013, 4(1): 220-228.
[4] Yu Z, Ren M, Wang Z, et al. Highly efficient genome modifications mediated by CRISPR/Cas in Drosophila. Genetics, 2013, 195(1): 289-291.
[5] 韩勇, 杨杰, 李子彬,等. 新型基因组编辑技术研究进展. 动物医学进展, 2015, 36(10): 100-105. Han Y, Yang J, Li Z B, et al. Progress on novel genome editing technologies. Progress in Veterinary Medicine, 2015, 36(10): 100-105.
[6] 杨发誉, 葛香连, 谷峰. 新型靶向基因座编辑技术研究进展. 中国生物工程杂志, 2014, 34(2): 98-103. Yang F Y, Ge X L, Gu F. Progress of next-generation targeted gene-editing techniques.China Biotechnol, 2014, 34(2): 98-103.
[7] Makarova K S, Wolf Y I, Koonin E V, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13(11): 722-736.
[8] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkalin phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429-5433.
[9] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[10] Fonfara I, Richter H, Bratovi? M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 2016, 532(7600): 517-521.
[11] 刘莹, 郑鹏生, 张忠明. CRISPR系统结构及功能的研究. 医学分子生物学杂志, 2014,11(4): 297-302. Liu Y, Zheng P S, Zhang Z M. Structure and function of CRISPR system.Med Mol Biol, 2014,11(4): 297-302.
[12] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8(1):1-10.
[13] Brouns S J, Jore M M, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960-964.
[14] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607.
[15] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
[16] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109(39): 2579-2586.
[17] 沈阳坤, 郑志泉, 蔡少丽. CRISPR/Cas系统在疾病模型和基因治疗中的应用. 中国生物化学和分子生物学报, 2015, 31(8): 786-794. Shen Y K, Zheng Z Q, Cai S L. The application of CRISPR/Cas9 system in disease models and gene therapy.Chin J Biochem Mol Biol, 2015, 31(8): 786-794.
[18] 卢利沙, 白杨, 刘鑫等. 利用CRISPR/Cas9技术构建敲除MEIS2基因的HEK293T人胚肾细胞系. 中国细胞生物学学报, 2015, 37(4): 535-541. Lu L S, Bai Y, Liu X. Construction of MEIS2 knockout HEK293T cell line by CRISPR/Cas9 technology.Chinese Journal of Cell Biology, 2015, 37(4): 535-541.
[19] Wiktor J, Lesterlin C, Sherratt D J, et al. CRISPR-mediated control of the bacterial initiation of replication. Nucleic Acids Res, 2016, 44(8): 3801-3810.
[20] Zimmer C T, Garrood W T, Puinean A M, et al. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect Biochem Mol Biol, 2016, 24(73): 62-69.
[21] Jao L E, Wente S R, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A, 2013, 110(34): 13904-13909.
[22] Rauch I, Tenthorey J L, Nichols R D, et al. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med, 2016, 213(5): 657-665.
[23] Ding Q, Regan S N, Xia Y, et al. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 2013, 12(4): 393-394.
[24] Schwank G, Koo B K, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 2013, 13(6): 653-658.
[25] Xie F, Ye L, Chang J C, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9): 1526-1533.
[26] 胡袁, 张婷, 姜长安. 运用改良的CRISPR/Cas9系统建立HtrA2敲除细胞株. 中国细胞生物学学报, 2014, 36(12): 1644-1648. Hu Y, Zhang T, Jiang C A. Nockout cell line with an improved CRISPR/Cas9 systerm.Chinese Journal of Cell Biology, 2014, 36(12): 1644-1648.
[27] Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(3): 227-229.
[28] Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23(4): 465-472.
[29] Mizuno S,Dinh T T, Kato K, et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm Genome, 2014, 25(7-8): 327-334.
[30] 马元武, 马婧, 路迎冬, 等. 利用CRISPR/Cas9敲除大鼠胰岛素受体底物1(Irs1)基因. 中国比较医学杂志, 2014, 24(3): 55-60. Ma Y W, Ma J, Lu Y D, et al. Generating insulin receptor substrate 1 (Irs1) knockout rat using CRISPR/Cas9.Chin J Comp Med, 2014, 24(3): 55-60.
[31] 周庭友, 孙中义, 张勇, 等. 鼠fscb基因靶向敲除载体的构建及动物模型的建立.第三军医大学学报, 2015, 37(15): 1527-1533. Zhou T Y, Sun Z Y, Zhang Y, et al. Construction of targeting vector and preparation of sheath CABYR-binding protein knockout mice using CRISPR/Cas9 system. Third Mil Univ, 2015, 37(15): 1527-1533.
[32] Wang K, Ouyang H. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623.
[33] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[34] Li W, Teng F, Li T, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013, 31(8): 684-686.
[35] Wang H, Yang H, Shivalila C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910-918.
[36] Friedmann T, Roblin R. Gene therapy for human genetic disease. Science, 1972, 175(4025): 949-955.
[37] Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013, 13(6): 659-662.
[38] Yin H, Xue W. Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014, 32(6): 551-553.
[39] Long C, McAnally J R, Shelton J M, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science, 2014, 345(6201): 1184-1188.
[40] Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol, 2016, 34(3): 334-338.
[41] Park C Y, Kim D H, Son J S, et al. Functional correction of large factor Ⅷ gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 2015, 17(2): 213-220.
[42] 季海燕, 朱焕章. 基因编辑技术在基因治疗中的应用进展. 生命科学, 2015, 27(1): 0071-0082. Ji H Y, Zhu H Z. Progress of genome editing approaches towards gene therapy.Chinese Bulletin of Life Sciences, 2015, 27(1): 0071-0082.
[43] Ramanan V, Shlomai A, Cox D B, et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep, 2015, 5: 10833.
[44] Ye L, Wang J M, Beyer A I, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A, 2014, 111(26): 9591-9596.
[45] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013, 3(8): 2510-2510.
[46] Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A, 2014, 111(31): 11461-11466.
[47] Wilkinson R, Wiedenheft B. A CRISPR method for genome engineering. F1000Prime Rep, 2014, 6(6): 3-3.
[48] Gao F, Shen X Z, Jiang F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol, 2016, doi: 10.1038/nbt.3547.

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[4] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[5] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[6] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[7] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[8] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[9] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[10] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[11] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[12] XUE Jin-feng, XUE Zhi-gang, CHEN Yi-yao, LI Zhuo, YIN Biao, WU Ling-qian, LIANG De-sheng. In vitro and in vivo Gene Therapy Research of CDTK Genes Drove by Enhanced Tumor-specific Promoter in Liver Cancer[J]. China Biotechnology, 2015, 35(6): 1-7.
[13] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[14] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[15] XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy[J]. China Biotechnology, 2015, 35(1): 75-81.