Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (10): 72-78    DOI: 10.13523/j.cb.20161010
    
Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy
LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu
College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China
Download: HTML   PDF(466KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

CRISPR-Cas9 is a novel highly specific and efficient technology of genome editing. CRISPR-Cas9 system consists of single guide RNA (sgRNA) and Cas9 protein, it can produce site-specific DNA double-strand breaks (DSBs), then induces the repair of nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) that gives rise to targeted genome modifications. Since its discovery, with its several advantages of easy operation, low cost, high efficiency and simultaneous targeting of arbitrary number of gene and so on, it has been widely applied. Recent researches show that the genome editing of CRISPR-Cas9 provides a new direction for gene therapy, through accurate disruption of causative endogenous gene or correction of the causative mutation or insertion of a new protective gene.The structure and the mechanism of CRISPR-Cas9, and also its gene therapy in diseases were reviewed and highlighted.



Key wordsGenome editing      Gene therapy      CRISPR-Cas9     
Received: 24 March 2016      Published: 25 October 2016
ZTFLH:  Q819  
Cite this article:

LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy. China Biotechnology, 2016, 36(10): 72-78.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20161010     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I10/72

[1] 毛超, 陶永光. 基因组编辑技术研究新进展. 生命的化学, 2015, 35(1): 96-104. Mao C, Tao Y G. Current progress of genome editing techniques. Chemistry of Life, 2015, 35(1): 96-104.
[2] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397-405.
[3] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Bacteriol, 1987, 169(12): 5429-5433.
[4] Mojica F J, Díez-Villasenor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea bacteria and mitochondria. Mol Microbiol, 2000, 36: 244-246.
[5] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
[6] Mojica F J, Díez-Villasenor C, Garc?a-Mart?nez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005, 60(2): 174-182.
[7] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[8] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[9] 李辉, 施振旦. CRISPR/Cas9新型基因打靶系统的研究进展. 江苏农业学报. 2013, 29(4): 907-911. Li H, Shi Z D. Research progress of gene targeting technology of CRISPR/Cas9 system. Jiangsu J of Agr Sci. 2013, 29(4): 907-911.
[10] Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9: 467-477.
[11] Nishimasu H, Ran F A, Hsu P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156 (5): 935-949.
[12] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471: 602-607.
[13] Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(13578): 569-573.
[14] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11): 2281-2308.
[15] Mali P, Luhan Y, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[16] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096-1-1258096-9.
[17] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154: 1380-1389.
[18] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[19] Shah S A, Erdmann S, Mojica F J, et al. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol, 2013, 10(5): 891-899.
[20] Sternberg S H, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490): 62-67.
[21] Jiang F, Taylor D W, Chen J S, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 2016, 351(6275): 867-871.
[22] Szczelkun M D, Tikhomirova M S, Sinkunas T, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and cascade effector complexes. Proc Natl Acad Sci USA, 2014, 111(27): 9798-9803.
[23] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32: 347-355.
[24] Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res, 2004, 32: 3683-3688.
[25] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32: 347-355.
[26] 周金伟, 徐绮嫔, 姚婧, 等. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. Zhou J W, Xu Q B, Yao J, et al. CRISPR/Cas CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas, 2015, 37(10): 1262-1278.
[27] Xue H Y, Zhang X, Wang Y, et al. In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther, 2016, 23: 557-559.
[28] Hsu P D, Lander E S, and Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157: 1262-1278.
[29] Horri T, Tamura D, Morita S, et al. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR System. Int J Mol Sci, 2013, 14: 19774-19781.
[30] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013, 3: 2510-2534.
[31] Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA, 2014, 111(31): 11461-11466.
[32] Horii T, Tamura D, Morita S, et al. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci, 2013, 14(10): 19774-19781.
[33] Xie F, Ye L, Chang J C, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9): 1526-1533.
[34] 刘超, 李志伟, 张艳桥. CRISPR/Cas9基因编辑系统在肿瘤研究中的应用进展. 中国肺癌杂志. 2015, 9(18): 571-579. Liu C, Li Z W, Zhang Y Q. Application progress of CRISPR/Cas9 system for gene editing in tumor research. Chin J Lung Cancer, 2015, 9(18): 571-579.
[35] Chen C, Yu L, Rappaport A R, et al. MLL3 is a haploinsufficient 7q tumor Suppressor in acute myeloid leukemia. Cancer Cell, 2014, 25(5): 652-665.
[36] Zhen S, Hua L, Takahashi Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun, 2014, 450(4): 14422-14426.
[37] Koenig M, Hoffman E P, Bertelson C J, et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell, 1987, 50(3):509-517.
[38] Tabebordbar M, Zhu K, Cheng J K, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351(6271): 407-411.
[39] Nelson C E, Hakim C H, Ousterout D G, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016,351: 403-407.
[40] Long C, Amoasii L, Mireault A A, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016,351: 400-403.
[41] 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37(10): 1003-1010. Zheng G, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas, 2015, 37(10): 1003-1010.
[42] Fu Y F, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9): 822-826.
[43] Tsai S Q, Zheng Z, Nguyen N T, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015,33: 187-197.
[44] Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 2015, 12:237-243.
[45] Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014, 24(1): 132-141.
[46] Fu Y F, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014, 32(3): 279-284.
[47] Doench J G, Fusi N, Sullender M, et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol, 2016,34: 184-191.
[48] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[49] Kleinstiver B P, Pattanayak V, Prew M S, et al. Highfidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature,2016,529: 490-495.
[50] Feng Z, Yan W, Xiong G.CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet, 2014, 23: 40-46.
[51] Bernd Z, Jonathan S G, Omar O A, et al. Cpfl is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell, 2015, 163:1-13.

[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[4] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[5] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[6] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[7] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[8] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[9] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[10] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[11] XUE Jin-feng, XUE Zhi-gang, CHEN Yi-yao, LI Zhuo, YIN Biao, WU Ling-qian, LIANG De-sheng. In vitro and in vivo Gene Therapy Research of CDTK Genes Drove by Enhanced Tumor-specific Promoter in Liver Cancer[J]. China Biotechnology, 2015, 35(6): 1-7.
[12] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[13] PU Qiang, LUO Jia, SHEN Lin-yuan, LI Qiang, ZHANG Yi, ZHANG Shun-hua, ZHU Li. The Advance and Application of CRISPR/Cas9 Mediated Genome Editing Technique[J]. China Biotechnology, 2015, 35(11): 77-84.
[14] XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy[J]. China Biotechnology, 2015, 35(1): 75-81.
[15] ZHANG Qiao-Juan, ZHANG Yan-Qiong, LIU Chang-Bai. TALEN:A New Genome Site-specific Editing Technology[J]. China Biotechnology, 2014, 34(7): 76-80.