Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (4): 104-109    DOI: 10.13523/j.cb.20160415
    
Production of Vitamin B12 by Propionibacterium freudenreichii Ex-situ Cell Transformation
DU Wei1,2, XU Guo-xia1,2, WANG Zi-qiang2, WANG Yun-shan2, ZHANG Li-ping1, SU Zhi-guo2
1. College of Life Science Hebei University, Baoding 071002, China;
2. The State Key Lab of Biochemical Engineering, The Institute of Process Engineering of the Chinese Academy of Sciences, Beijing 100080, China
Download: HTML   PDF(581KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The semi-continuous coupling fermentation process can significantly improve the economical efficiency of Propionibacterium freudenreichii. In order to avoid the negative effect of DMB addition on Propionibacterium freudenreichii semi-continuous fermentation, the feasibility of synthesis of vitamin B12 by ex-situ cell transformation is investigated. Also, the ex-situ cell transformation process is optimized from the aspects of cell seperation time, transformation system and DMB addition mode. The details are as follows: when the fermentation process is carried out for 84 h, cells are removed from the fermentation broth by centrifugation. The supernatant is used to resuspended the cells and a 5 times concentration suspension is obtained. Then a final concentration of 4.5 mg/L DMB is added to synthesis vitamin B12 for 48 h at 30 ℃. The Vitamin B12 yield can reached 108.06 mg/L, with a conversion efficiency of 2.26 mg/(Lh).



Key wordsPropionibacterium freudenreichii      Ex-situ cell transformation      Vitamin B12     
Received: 23 December 2015      Published: 26 January 2016
ZTFLH:  Q819  
Cite this article:

DU Wei, XU Guo-xia, WANG Zi-qiang, WANG Yun-shan, ZHANG Li-ping, SU Zhi-guo. Production of Vitamin B12 by Propionibacterium freudenreichii Ex-situ Cell Transformation. China Biotechnology, 2016, 36(4): 104-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160415     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I4/104

[1] Piao Y Z, Yamashita M, Kawaraichi N, et al. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. Journal of Bioscience and Bioengineering, 2004, 98(3): 167-173.
[2] Zhang A, Yang S T. Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnology and Bioengineering, 2009, 104(4): 766-773.
[3] Wang Z Q, Ammar E M, Zhang A, et al. Engineering Propionibacterium freudenreichii subsp. Shermanii for enhanced propionic acid fermentation: Effects of overexpressing propionyl-CoA:Succinate CoA transferase. Metabolic Engineering, 2015, 27: 46-56.
[4] Guan N Z, Liu L, Shin H D, et al. Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 2013, 167(1): 56-63.
[5] Kang Z, Zhang J L, Zhou J W, et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 2012, 30(6): 1533-1542.
[6] Feng X H, Chen F, Xu H, et al. Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresource Technology, 2011, 102(10): 6141-6146.
[7] Chen F, Feng X H, Xu H, et al. Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015. Journal of Biotechnology, 2012, 164(2): 202-210.
[8] Wang P, Wang Y S, Liu Y D, et al. Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresource Technology, 2012, 104: 652-659.
[9] Wang P, Wang Y S, Su Z G. Improvement of adenosylcobalamin production by metabolic control strategy in Propionibacterium freudenreichii. Applied Biochemistry and Biotechnology, 2012, 167(1): 62-72.
[10] 张玉明,王雷,王云山,等. 维生素B12的生物合成研究. 食品与发酵工业,2005, 31(9): 70-73. Zhang Y M, Wang L, Wang Y S, et al. Research on biosynthesis of vitamin B12. Food and Fermentation Industries, 2005, 31(9): 70-73.
[11] 王鹏,王云山,张利平,等. 脱氧腺苷钴胺素生物合成途径中一种中间产物的研究.生物工程杂志,2007, 27(11): 37-40. Wang P, Wang Y S, Zhang L P, et al. Research on an intermediate of deoxyadenosyl cobalam in biosynthesis of propionic bacterium freudenreichii. China Biotechnology, 2007, 27(11): 37-40.
[12] Charles A, Roessner A, Ian S. Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). Journal of Bacteriology, 2006, 188(21): 7331-7334.
[13] Harishchandra S, Hanaa A H, Nicola E B. Kinetic and mechanistic studies on the reaction of the vitamin B12 complex aquacobalamin with the HNO Donor Angeli's Salt: Angeli's Salt and HNO react with Aquacobalamin. Inorganic Chemistry. 2014, 53(3), 1570-1577.
[14] 陈唤蛟,李小连,李彦良,等.丙酸高产菌株的选育及发酵培养基优化.过程工程学报,2014,14(3):482-486. Chen H J, Li X L, Li Y L, et al. Screening of high yield propionic acid producing strain and optimization of its fermentation medium. The Chinese Journal of Process Engineering, 2014,14(3):482-486.
[15] Wang P, Zhang Z W, Jiao Y J, et al. Improved propionic acid and 5,6-dimethylbenzimidazole control strategy for vitamin B12 fermentation by Propionibacterium freudenreichii. Journal of Biotechnology, 2015, 193: 123-129.
[16] Kang Z, Zhang J L, Zhou J W, et al. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advances, 2012, 30(6): 1533-1542.

[1] SHI Hui-lin, WANG Ze-jian, WU Jie-qun, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping. Expression of Vitreosicilla Hemoglobin Gene(vgb) In Pseudomonas denitrificans and the Central Carbon Metabolic Flux Analysis on Vitamin B12 Production[J]. China Biotechnology, 2016, 36(9): 21-30.
[2] WANG Ze-jian, ZHAO Lin-lin, CHU Ju, ZHANG Ying-ping, ZHANG Si-liang. The Determination and Control of Coproporphyrin Ⅲ in Vitamin B12 Fermentation by Pseudomonas denitrificans[J]. China Biotechnology, 2011, 31(8): 47-53.